研究生: |
呂宗哲 Tsung-Che Lu |
---|---|
論文名稱: |
用於電容式微機電感測器之低雜訊介面電路設計 Design of a Low-noise Interface Circuit for Capacitive CMOS-MEMS Sensors |
指導教授: |
周懷樸
Hwai-Pwu Chou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 微機電 、電容感測 、低雜訊 |
外文關鍵詞: | MEMS, low-noise |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文闡述了一個嶄新的電容感測電路架構。其利用了載波輸入MEMS全差動電橋(fully-differential bridge circuit)搭配電壓緩衝器(voltage buffer)作為前級,其能將電容訊號調變至高頻,以避開電路中的低頻雜訊。而後再利用一切換電容的解調電路,將訊號解調回基頻並放大,有效減少因為感測電容不匹配,所造成的解調後訊號之交流失真。在此解調電路中,吾人利用相關雙取樣技巧有效降低電路的低頻雜訊及輸入偏差電壓,增加系統的感測度。設計完成之電路佈局 吾人搭配一微機電加速度感測結構組成系統,委託國家晶片設計中心(CIC)進行下線,製程技術由台灣積體電路公司(TSMC)之0.35um Mixed-Signal 2P4M CMOS提供。由後模擬(post-simulation)得該電路在1fF電容的變化下,解調後訊號之靈敏度為155mV/fF,且在時域模擬上也驗證其抗交流失真能力。下線完成的晶片量測得其電路部分訊噪比(SNR)為44dB,訊噪與失真比(SNDR)為42.7dB,無雜訊動態範圍(SFDR)為36.3dB,與模擬結果相近,展現其良好的線性度。在功率消耗方面,當電路在4MHz的時脈頻率運作時,其值為4.29mW。量測結果也證實該電路在微機電電容不匹配比例最高達到10.6%時,仍能解調並降低交流失真至最低,適合用於微機電電容感測的應用上。
[1] J. Wu, G. K. Fedder, and L. R. Carley, “A low-noise low-offset capacitive sensing amplifier for a 50□g/√Hz monolithic CMOS MEMS accelerometer,” IEEE J. of Solid-State Circuits, vol. 39, pp. 722-730, 2004.
[2] N. Wongkomet, and B. E. Boser, “Correlated double sampling in capacitive position sensing circuits for micromachined applications,” in Proc. IEEE Asia-Pacific Conf. on Circuits and Systems, 1988, pp. 723-726.
[3] N. Yazdi, H. Kulah, and K. Najafi, “Precision readout circuits for capacitive microaccelerometers,” in Proc. of IEEE Sensors, vol. 1, Oct. 2004, pp.28–31.
[4] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
[5] C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” Proc. IEEE, vol. 84, no. 11, pp. 1584–1614, Nov. 1996.
[6] M. Lemkin, and B. E. Boser, “A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics,” IEEE J. of Solid-State Circuits, vol. 34, no.4, pp. 456-468, 1999.
[7] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits. New York: Wiley, 2000, ch. 12.
[8] G. Zhang, H. Xie, L. E. de Rosset and G. K. Fedder, “A lateral capacitive CMOS accelerometer with structural curl compensation,” in Technical Digest of the 12th IEEE Inl. Conf. on Micro Electro Mechanical Systems, Jan. 17-21, 1999, pp. 606-611.
[9] J. J. Cantrell, “An integrated low-power 14-bit analog-to-digital converter for a MEMS capacitive sensor,” M.S. thesis, Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA, 2003.
[10] M. Tavakoli and R. Saroeshkar, “An offset-cancelling low-noise lock-in architecture for capacitive sensing,” IEEE J. Solid-State Circuits, vol.38, no.2, pp. 244-253, Feb. 2003.
[11] M. C. Huang, “A low-noise CMOS interface circuit for capacitive MEMS sensors,” M.S. thesis, Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, 2006.
[12] M. Suster, J. Guo, N. Chaimanonart, W. H. Ko, and D. J. Young, “Low-Noise CMOS Integrated Sensing Electronics for Capacitive MEMS Strain Sensors,” in Proc. IEEE Custom Integrated Circuits Conf., Oct. 2004, pp.693-696.
[13] ADXL50, “Monolithic accelerometer with signal conditioning.” Datasheet, Analog Devices Inc, One Technology Way, Norwood, MA 02062, 1993.
[14] H. Luo, G. Zhang, R. Carley, and G. K. Fedder, “A post-CMOS micromachined lateral accelerometer,” IEEE/ASME J. of Microelectromechanical Systems, Jun. 2002, pp. 188-195.
[15] H. Luo, X. Zhu, H. Lakdawala, L. R. Carley, and G. K. Fedder, “A copper CMOS-MEMS z-axis gyroscope”, in Proc. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, Jan. 2002, pp. 631-634.
[16] X. Liu, H. Zhang, G. Li, W. Chen, and X. Wang, “Design of readout circuits used for micro-machined capacitive accelerometer,” in Proc. 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Jan. 2007, pp. 537-541.
[17] A. Ambardar, Analog and Digital Signal Processing. Brooks/Cole, 1999, ch.8.
[18] Y. Huang, G. C. Temes, and P. E. Ferguson, “Reduced Nonlinear Distortion in Circuits with Correlated Double Sampling”, in Proc. IEEE International Symposium on Circuits and Systems, vol. 1, 1996, pp. l59-162.
[19] E. McCarthy, Design and Layout of a Telescopic Operational Transconductance Amplifier. Maine: University of Maine, 2003.
[20] D. Johns, and K. Martin, Analog Integrated Circuit Design. New York: Wiley, 1997.
[21] C. Menolfi, and Q. Huang, “A Low-Noise CMOS Instrumentation Amplifier for Thermoelectric Infrared Detectors,” IEEE J. of Solid-State Circuits, vol. 32, no.7, pp. 968-976, 1997.
[22] N. Panitantum, and N. Wongkomet, “A low-offset high-CMRR switched- capacitor instrumentation amplifier for data acquisition applications,” 2002 Asia-Pacific Conference on Circuits and Systems (APCCAS ’02), Oct. 2002, pp. 339-342.
[23] R. R. Harrison, and C. Charles, “A low-power low-noise CMOS amplifier for neural recording applications,” IEEE J. of Solid-State Circuits, vol. 38, no.6, pp. 958-965, 2003.