研究生: |
蔡士豪 Tsai, Shih-Hao |
---|---|
論文名稱: |
以射頻電漿輔助分子束磊晶成長之氮化鎵薄膜及奈米柱 GaN Thin Films and Nanorods Grown by Radio-Frequency Plasma Assisted Molecular Beam Epitaxy |
指導教授: |
吳孟奇
Wu, Meng-Chyi 林時彥 Lin, Shih-Yen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 96 |
中文關鍵詞: | 氮化鎵 、極性 、奈米柱 、分子束磊晶 |
外文關鍵詞: | GaN, Polarity, Nanorod, Molecular Beam Epitaxy |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是以射頻電漿輔助分子束磊晶方式成長之氮基材料成長與其表面形態及發光特性,包含氮化鎵薄膜與奈米柱的成長與分析。首先,第一章為研究動機與氮化物材料的概述。接著在第二章主要為此論文研究所使用之成長系統及相關量測儀器的原理介紹,其中包含了電漿輔助分子束磊晶系統及其反射式高能電子繞射系統、掃瞄式電子顯微鏡、穿透式電子顯微鏡、微區光激螢光光譜與拉曼散射光譜。第三章為藉由電漿輔助分子束磊晶系統成長氮化鎵薄膜於不同材料之緩衝層之表面極性分析,首先,以不同溫度成長不同的材料的緩衝層於[0001]面的藍寶石基板上,接著再於緩衝層上以低溫成長一層氮化鎵薄膜,緩衝層主要以高溫成長的氮化鎵及高溫成長的氮化鋁為主。在高溫成長的氮化鋁上成長之氮化鎵薄膜表面為鎵原子極性,而在低溫成長的氮化鎵上成長之氮化鎵薄膜則呈現氮原子極性。第四章為藉由電漿輔助分子束磊晶系統自我成長氮化鎵奈米柱於(111)面的矽基板上,包含不同基板溫度和不同五三族元素比成長之奈米柱,對奈米柱表面形態和光學特性進行分析。最後在第五章對這本論文的研究做個總結。
The focus of this thesis is on the study of the surface morphology and optical properties of nitride-based materials grown by radio frequency plasma assisted molecular beam epitaxy, including the growth and analysis of GaN thin films and nanorods. Firstly, Chapter 1 is the motivation of this study and the review introduction of nitride-based materials. The operation principles and mechanisms of epitaxy system and relative measurement equipments adopted in this study are introduced in Chap 2. These equipments include plasma assisted molecular beam epitaxy system, reflection high energy electron diffraction system, scanning electron microscopy, transmission electron microscopy, micro-photoluminescence spectroscopy and micro-Raman scattering spectroscopy. In Chapter 3, the surface polarities of GaN thin films grown on different buffer layers are discussed in this chapter. With different buffer layers grown on [0001] plane sapphire substrates under different temperatures, GaN thin films are grown on them. The different buffer layers include low-temperature GaN and high-temperature AlN. Ga polarity is observed on the GaN thin film grown on high-temperature AlN buffer, while N polarity is observed for low-temperature GaN buffer. In Chapter 4, GaN nanorods grown on Si(111) substrates are investigated. The influence of different growth parameters like substrate temperature and V/III ratios are investigated in this chapter. The surface and optical properties of the samples are also investigated in this chapter. Chap 5 is the conclusion.
[1] H. Morkoc, Nitride semiconductors and Devices, Springer, Heidelberg, 1999.
[2] S. Nakamura, The Blue Laser Diode, Springer, 2000.
[3] S. J. Pearton (Ed.), GaN and Related Materials, Gordon and Breach, New York, 1997.
[4] B. Gil (Ed.), Group III Nitride Semiconductor Compounds, Clarendon Press, Oxford, 1998.
[5] J. I. Pankove, T. D. Moustakas (Eds.), GaN, vol. 1, Academic Press, New York, 1998.
[6] E. F. Schubert, Light-Emitting Diodes 2nd edition, (Cambridge University Press, 2006)
[7] L. Liu, J.H. Edgar, Mater. Sci. Eng. R , 37, 61 (2002).
[8] http://en.wikipedia.org/wiki/GaN
[9] S. F. Chichibu, H. Yamaguchi, L. Zhao, M. Kubota, K. Okamoto, and H. Ohta, Appl. Phys. Lett., 92, 091912 (2008).
[10] J. K. Tsai, Ikai Lo, K. L. Chuang, L. W. Tu, J. H. Huang, C. H. Hsieh, and K. Y. Hsieh, J. Appl. Phys., 95, 460 (2004).
[11] K. Iwata, H. Asahi, K. Asami, R. Kuroiwa, S. Gonda, J. Cryst. Growth, 188, 98 (1998).
[12] H. Tang and James B. Webb, Appl. Phys. Lett., 74, 2373 (1999).
[13] K. Xu, A. Yoshikawa, Appl. Phys. Lett., 83, 251 (2003).
[14] A. G. Bhuiyan, A. Hashimoto, A. Yamamoto, J. Appl. Phys., 94, 2779 (2003).
[15] Y. Nanishi, Y. Saito, T. Yamaguchi, Jpn. J. Appl. Phys., 42, 2549 (2003).
[16] H. M. Ng, D. Doppalapudi, D. Korakakis, R. Singh, T. D. Moustakas, J. Cryst. Growth, 189, 349 (1998).
[17] H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Appl. Phys. Lett., 48, 353 (1986).
[18] S. Nakamura, N. Iwasa, M. Senoh, T. Mukai, Jpn. J. Appl. Phys., 31, 1258 (1992).
[19] W. Kim, A. E. Botchkarev, A. Salvador, G. Popovici, H. Tang, H. Morkoc, Appl. Phys. Lett., 82, 219 (1996).
[20] I. Berishev, E. Kim, A. Fartassi, M. Sayhi, A. Bensaoula, J. Vac. Sci. Technol. A , 17, 2166 (1999).
[21] M. S. Son, S. I. Im, Y. S. Park, C. M. Park, T. W. Kang, K.-H. Yoo, Mater. Sci. Eng. C, 26, 886 (2006).
[22] Hwa-Mok Kim, Tae Won Kang, and Kwan Soo Chung, Adv. Mater., 15, No. 7, 567 (2003).
[23] Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, Nano Lett., 8, 4191 (2008).
[24] J. L. Pau, E. Monroy, E. Muñoz, F. B. Naranjo, F. Calle, M.A. Sánchez-García, E. Calleja, J. Cryst. Growth, 230, 544 (2001).
[25] Y. Cordier, F. Semond, P. Lorenzini, N. Grandjean, F. Natali, B. Damilano, J. Massies, V. Hoël, A. Minko, N. Vellas, J. Cryst. Growth, 251, 811 (2003).
[26] A. Bourret, A. Barski, J. L. Rouvière, G. Renaud, A. Barbier, J. Appl. Phys., 83, 2003 (1998).
[27] H. J. Webm, N. Dahne-Prietsch, A. Bauer, M. T. Cuberes, I. Manke, G. Kaindl, J. Vac. Sci. Technol. A, 13, 2399 (1995).
[28] M. A. Sánchez-García, E. Calleja, F. J. Sánchez, F. Calle, E. Monroy, D. Basak, E. Muñoz, C. Villar, A. Sánz- Hervás, M. Aguilar, J. J. Serrano, J. M. Blanco, J. Electron. Mater., 27, 276 (1998).
[29] S. Strite and H. Morkoc, “GaN, AlN, and InN:A review” J. Vac. Sci. Technol. B, 10, 1237 (1992).
[30] H. Siegle, L. Eckey, A. Hoffmann, C. Thomsen, B. K. Meyer, D.Schikora, M. Hankeln, and K. Lischka, Solid State Comm., 96, 943 (1995).
[31] T. Azuhata, T. Sota, K. Suzuki, and S. Nakarmura, J. Phys:Condens. Matter, 7, L129 (1995).
[32] H. Harima, J. Phys.:Condens. Matter, 14, R967 (2002).
[33] L. K. Li, M. J. Jurkovic, W. I. Wang, J. M. Van Hove, and P. P. Chow, Appl. Phys. Lett., 76, 1740 (2000).
[34] E. C. Piquette, P. M. Bridger, Z. Z. Bandic, and T. C. McGill, J. Vac. Sci. Technol. B, 17, 1241 (1999).
[35] U. Karrer, O. Ambacher, and M. Stutzmann, Appl. Phys. Lett., 77, 2012 (2000).
[36] J. L. Rouviere, J. L. Weyher, M. Seelmann-Eggebert, and S. Porowski, Appl. Phys. Lett., 73, 668 (1998).
[37] X. Q. Shen, T. Ide, S. H. Cho, M. Shimizu, S. Hara, and H. Okumura, Appl. Phys. Lett., 77, 4013 (2000).
[38] A. R. Smith, R. M. Feenstra, D. W. Greve, M. S. Shin, M. Skowronski, J. Neugebauer, and J. E. Northrup, Appl. Phys. Lett., 72, 2114 (1998).
[39] D. Huang, P. Visconti, K. M. Jones, M. A. Reshchikov, F. Yun, A. A. Baski, T. King, and H. Morkoc, Appl. Phys. Lett., 78, 4145 (2001).
[40] E. C. Piquette, P. M. Bridger, Z. Z. Bandi, T. C. McGill, J. Vac. Sci. Technol. B, 17, 1241 (1999).
[41] J. L. Rouviere, J. L. Weyher, M. Seelmann-Eggebert, S. Porowski, Appl. Phys. Lett., 73, 668 (1998).
[42] M. Seelmann-Eggebert, J. L. Weyher, H. Obloh, H. Zimmermann, A. Rar, S. Porowski, Appl. Phys. Lett., 71, 2635 (1997).
[43] M. H. Huang et al., Science, 292, 1897 (2001).
[44] Y. Huang, X. Duan, Y. Cui, Lincoln, J. Lauhon, K. H. Kim, and C. M. Lieber, Science, 294, 1313 (2001).
[45] S. C. Shi, C. F. Chen, S. Chattopadhyay, Z. H. Lan, K. H. Chen, and L. C. Chen, Adv. Funct. Mater., 15, 781 (2005).
[46] C. L. Hsiao, L. W. Tu, M. Chen, Z. W. Jiang, N. W. Fan, Y. J. Tu, and K. R. Wang, Jpn. J. Appl. Phys., Part 2, 44, L1076 (2005).
[47] X. Chen et al., Adv. Mater. (Weinheim, Ger.), 12, 1432, (2000).
[48] W. Han, S. Fan, Q. Li, and Y. Hu, Science, 277, 1287 (1997).
[49] Y. Inoue et al., Appl. Phys. Lett., 85, 2340 (2004).
[50] M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, and K. Kishino, J. Cryst. Growth, 189/190, 138 (1998).
[51] E. Calleja et al., J. Cryst. Growth, 201/202, 296 (1999).
[52] T. Yamashita, S. Hasegawa, S. Nishida, M. Ishimaru, Y. Hirotsu, and H. Asahi, Appl. Phys. Lett., 86, 082109 (2005).
[53] H. M. Kim, D. S. Kim, D. Y. Kim, T. W. Kang, Y. H. Cho, and K. S. Chung, Appl. Phys. Lett., 81, 2193 (2002).
[54] L. W. Tu, C. L. Hsiao, T. W. Chi, I. Lo, and K. Y. Hsieh, Appl. Phys. Lett., 82, 1601 (2003).
[55] L. Cerutti, J Ristić, Fernández-Garrido, E. Calleja, A. Trampert, K. H. Ploog, S. Lazic and J. M. Calleja, Appl. Phys. Lett., 88, 213114 (2006).
[56] Y. H. Kim, J. Y. Lee, S. -H. Lee, J. -E. OH, and H. S. Lee, Appl. Phys. A, 80, 1635 (2005).
[57] H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, Nano Lett., 4, 1059 (2004).
[58] J. Ristic, E. Calleja, A. Trampert, S. Fernández-Garrido, C. Rivera, U. Jahn, and K. H. Ploog, Phys. Rev. Lett., 94, 146102 (2005).
[59] H. Lohmeyer et al., Appl. Phys. Lett., 88, 051101 (2006).
[60] D. C. Streit and F.G. Allen, J. Appl. Phys., 61, 2894 (1987)
[61] Shou-Yi Kuo, Fang-I. Lai, Wei-Chun Chen, and Shien-Nan Hsiao, J. Cryst. Growth, 310, 5129 (2008).
[62] G. D. Chen, M. Smith, J. Y. Lin, H. X. Jiang, A. Salvador, B. N. Sverdlov, A. Botchkarv, and H. Morkoc, J. Appl. Phys. 79, 2675 (1996).
[63] Y. S. Park, J. H. Na, R. A. Taylor, C. M. Park, K. H. Lee, and T. W. Kang, Nanotech., 17, 913 (2006).