簡易檢索 / 詳目顯示

研究生: 曾憶婷
Yi-Ting Tseng
論文名稱: 高熵合金Co1.5CrFeNi1.5Ti0.5Mox之電化學量測及其特性之研究
Electrochemical Monitoring and Properties of the High Entropy Alloy Co1.5CrFeNi1.5Ti0.5Mox in Aqueous Environments
指導教授: 施漢章
Han C. Shih
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 108
中文關鍵詞: 高熵合金304 不□鋼陽極極化循環極化電化學阻抗頻譜腐蝕孔蝕
外文關鍵詞: high entropy alloy, 304 stainless steel, anodic polarization, cyclic polarization, EIS, corrosion, pitting corrosion
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是探討新開發之高熵合金的腐蝕行為及其電化學特性之研究,此系列合金非常特殊,高熵合金Co1.5CrFeNi1.5Ti0.5為FCC相,但其硬度比一般的FCC型合金高,為了進一步測試其實用性,因此做了一些材料腐蝕性質方面的研究;然而,Mo元素的添加有助於抗氯鹽之孔蝕,因此添加Mo元素於高熵合金內,改變Mo成份之莫耳比進行探討,並嘗試做加工和表面氧化的變化,並與商用304不□鋼做比較。
    實驗分別於0.5 M硫酸與1 M氯化鈉溶液中進行,結果顯示:無論於室溫、高溫、高氯離子濃度環境下,Co1.5CrFeNi1.5Ti0.5Mox的抗孔蝕能力遠高於304不□鋼,當高熵合金還未到達孔蝕電位,304不□鋼的電流密度已經高於高熵合金104倍,而從循環極化以及SEM的結果,亦可明顯看出此高熵合金具有極佳的抗孔蝕能力。
    於硫酸溶液中,此高熵合金極化曲線的結果顯示其抗蝕能力與304不□鋼相當,但是觀察腐蝕後的表面形貌,高熵合金腐蝕破壞的情形較為嚴重,可能為鑄造後形成之樹枝晶與樹枝間相所造成。添加Mo元素則可有效提升合金的抗蝕能力,但是隨者Mo含量增加至0.8份時,由於第二相的生成,反而使抗蝕能力下降;另外,將高熵合金浸泡於硫酸溶液中30天後,亦發現Co1.5CrFeNi1.5Ti0.5有明顯的樹枝晶結構,Co1.5CrFeNi1.5Ti0.5Mo0.1卻無明顯的樹枝晶結構。
    測試均質化加工後之試片得知:對硫酸之抗蝕性有顯著的改善,因此可藉由其他方式之加工來改善其抗蝕性。表面氧化之試片,目的為觀察於表面生成一層薄的自生氧化物之後,是否有達到保護內部合金的效果,而本實驗利用於900 ℃下持溫4小時之製程參數生成的氧化物太厚;因為熱膨脹係數的差異,導致熱應力存在而容易剝落,應考慮縮短氧化時間,生成一層薄且附著力佳的氧化膜。


    High entropy alloys (HEAs) are a newly developed family of multi-component alloys composed of at least five major elements, such as chromium, iron, nickel, aluminum, cobalt, titanium, copper, as well as molybdenum, etc. HEAs Co1.5CrFeNi1.5Ti0.5 has an FCC structure, a higher hardness than other FCC, good resistances to oxidation, and atmospheric corrosion. The potential applications of the HEAs are very significant. On the other hand, the addition of Mo, such as 304ss and 316ss, may have good pitting corrosion resistance.
    To further understand the electrochemical properties of the HEAs, the HEAs Co1.5CrFeNi1.5Ti0.5Mox was conducted in 0.5 M H2SO4 and 0.1 M NaCl solution. The result of this study shows that the HEAs Co1.5CrFeNi1.5Ti0.5Mox have much higher pitting corrosion resistances (~1.2 V) than 304ss (~0.18 V) in the Cl- containing environments, as indicated by the significant differences in passive range as well as in pitting potential. The anodic polarization curves determined for Co1.5CrFeNi1.5Ti0.5Mox and for 304ss are very similar to each other in the chloride-free 0.5M H2SO4. However, the SEM images show that the surface morphology of the HEAs has been seriously damaged due to their cast-structure. The corrosion phenomenon will be discussed via electrochemical impedance spectroscopy together with the SEM observations.
    The HEAs which was set in 1100 ℃ for 6 hours, then quenched by water is called homogenization. This kind of HEAs has good corrosion resistance in sulfuric acid solution. The oxidation film of HEAs was too thick. It was under the 900℃environment which was filled with oxygen for 4 hours treatment. The improvement way is to shorten the oxidation time or transform the atmosphere. In order to form an good adhesion and thin film.

    第一章 前言 1 第二章 文獻回顧 3 2.1 高熵合金 3 2.1.1高熵合金的起源[10] 3 2.1.2 何謂高熵合金 4 2.1.3 高熵合金的特點 4 2.1.4高熵合金的應用 6 2.2 電化學原理及量測方法 7 2.2.1 線性極化(Linear Polarization) 7 2.2.2 腐蝕電流的量測 8 2.2.3 陽極極化(Anodic Polarization) 10 2.2.4 循環極化………………………………………………...11 2.2.5 電化學阻抗頻譜[29,30] 13 2.2.6 腐蝕速率的量測 18 2.3 均勻腐蝕 21 2.4 加凡尼電池效應 22 2.5 孔蝕的基本理論 23 2.5.1 形成孔蝕的條件 23 2.5.2 孔蝕的機制 25 第三章 實驗方法 28 3.1合金成份 28 3.2試片製備 30 3.3電化學測試 32 3.3.1陽極極化掃描 34 3.3.2循環極化掃描 36 3.3.3電化學阻抗頻譜分析 (EIS) 36 3.4後續分析 37 第四章 結果與討論 39 4.1 鑄造態Co1.5CrFeNi1.5Ti0.5Mox之電化學特性量測 39 4.1.1 XRD之結構分析 39 4.1.2 於除氧之0.5 M硫酸溶液中陽極極化測試 40 4.1.3 於除氧之1 M氯化鈉溶液中循環極化測試 43 4.1.4 於除氧之1 M氯化鈉溶液中陽極極化測試 46 4.1.5 極化前後之表面形貌觀察 50 4.1.6 EIS測試 63 4.2 Cl-濃度對於鑄造態Co1.5CrFeNi1.5Ti0.5Mox之影響 67 4.3溫度對於鑄造態Co1.5CrFeNi1.5Ti0.5Mox之影響 72 4.3.1 於除氧之1 M氯化鈉溶液中陽極極化測試 72 4.3.2 於除氧之0.5 M硫酸溶液中陽極極化測試 76 4.4鑄造態高熵合金Co1.5CrFeNi1.5Ti0.5Mox之浸泡實驗 80 4.4.1 浸泡前後EIS測試 81 4.4.2 浸泡後之表面微結構觀察 84 4.5 鑄造態高熵合金Co1.5CrFeNi1.5Ti0.5Mox之表面氧化 85 4.5.1 氧化後Co1.5CrFeNi1.5Ti0.5Mox之表面形貌 85 4.5.2 氧化後Co1.5CrFeNi1.5Ti0.5Mox之XRD分析 92 4.5.3 氧化後Co1.5CrFeNi1.5Ti0.5Mox之電化學特性量測 93 4.6 均質化後水淬高熵合金Co1.5CrFeNi1.5Ti0.5Mox之電化學特性量測 95 4.6.1 XRD之結構分析 95 4.6.2 於除氧之0.5M硫酸溶液中陽極極化測試 96 4.6.3 極化後之表面形貌觀察 97 第五章 結論 99 第六章 未來工作 101 參考資料 102

    1. Y. Y. Chen, U. T. Hong, J. W. Yeh, and H. C. Shih, “Mechanical properties of a bulk Cu0.5NiAlCoCrFeSi glassy alloy in 288°C high-purity water”, Appl. Phys. Lett. 87 (2005) 261918-261920
    2. Y. Y. Chen, T. Duval, U. D. Hung, J.W. Yeh, H. C. Shih, “Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel”, Corros. Sci. 47 (2005) 2679-2699
    3. Y. Y. Chen, T. Duval, U. D. Hung, J.W. Yeh, H. C. Shih, “Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel”, Corros. Sci. 47 (2005) 2257-2279
    4. Y. J. Hsu, W. C. Chiang, and J. K. Wu, “Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution”, Mater. Chem. and Phys. 92 (2005) 112-117
    5. 張瑋倫, 杜宗附, 開物, “鐵鈷鎳基等莫耳合金之高溫硫化行為研究”, 防蝕工程 第十九卷 第一期 91-109, 2005.
    6. 陳彥羽, 洪育德, 葉均蔚, 施漢章, “高亂度合金的金相與電化學極化之研究 – 在室溫下與其他鋼材做比較”, 防蝕工程 第十八卷第一期 25 – 40, 2004.
    7. 林家旭,”Fe2AlCoCrNiMo0.5高熵合金在室溫下之電化學性質”, 國立清華大學材料工程研究所碩士論文,2005
    8. 吳家豪,”AlxFeCoNiCrMo0.5高熵合金之腐蝕及電化學性質”,國立清華大學材料工程研究所碩士論文,2006
    9. 張競謙,”AlxCrMnFe1.5Niy高熵合金之腐蝕及電化學性質行為研究”,國立清華大學材料工程研究所碩士論文,2006
    10. Jien-Wei Yeh, Swe-Kai Chen, Su-Jien Lin, Jon-Yiew Gan, Tsung-Shune Chin, Tao-Tsung Shun, Chun-Huei Tsau, and Shou-Yi Chang, “Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes”, Advanced Engineering Meterials, 6 (2004) 299-303
    11. J. Kramer, “Der amorphe Zustand der Metalle”, Z. Phys., 106 (1937) 675-691
    12. J. Kramer, “Noconducting modification of metals”, J. Annln. Phys., 19 (1934) 37-64
    13. A. Bremer, D. E. Couch and E. K. Williams, J. Res. Natn Bur. Stand., 44 (1950) 109
    14. P. Duwez, R. H. Willens, and W. Klement, “Continuous Series of Metastable Solid Solutions in Silver-Copper Alloys”, J. Appl. Phys., 31 (1960) 1136-1137
    15. P. Duwez and R. H. Willens, “Rapid Quenching of Liquid Alloys”, Trans. Met. Soc. AIME, 227 (1963) 362-365
    16. A. Inoue, K. Kita, T. Masumoto and K. Ohtera, “New Amorphous-Alloys with Good Ductility in Al-Ce-NB, Al-Ce-Fe, Al-Ce-Co, Al-Ce-Ni, Al-Ce-Cu Systems”, Japanese Journal of Applied Physics Part 2-Letters, 27 (1998) 1796-1799
    17. A. Inoue, K. Kita, T. Masumoto and T. Zhang, “An Amorphous La-55-Al-25-Ni-20 Alloy Prepared by Water Quenching ,“ Mater. Trans. JIM, 30 (1989) 722-725
    18. A. Inoue-A, T. Zhang and T. Masumoto, “Zr-Al-Ni Amorphous-Alloys with High Glass-Transition Temperature and Significant Supercooled Liquid Region”, Mater. Trans. JIM, 31(1990) 177-183
    19. A. Inoue and T. Masumoto, U.S. parent No. 5032196, Japanese Patent 07-122120
    20. A. Peker and W. L. Johnson, “A Highly Processable Metallic-Glass-Zr41.2Ti13.8Cu12.5Ni10.0Be22.5”, Appl. Phys. Lett., 63 (1993) 2342-2344
    21. A. Inoue, T. Zhang, K. Ohba and T. Shibata, “Continuous-Cooling-Transformation (CCT) Curves for Zr-Al-Ni-Cu Supercooled Liquids to Amorphous or Crystalline Phase”, Mater. Trans. JIM, 36 (1995) 876-878
    22. T. Zhang and A. Inoue, ”Thermal and Mechanical-Properties of Ti-Ni-Cu-Sn Amorphous-Alloys with a Wide Supercooled Liquid Region Before Crystallization”, Mater. Trans. JIM, 39 (1998) 1001-1006
    23. X. Wang, I. Yoshii, A. Inoue, Y. H. Kim, and I. B. Kim, “Bulk amorphous Ni75-xNb5MxP20-yBy(M=Cr, Mo) alloys with large supercooling and high strength”, Mater. Trans. JIM, 40 (1999) 1130-1136
    24. 黃國雄,“等莫耳比多元合金系統之研究”, 國立清華大學材料科學工程研究所碩士論文, 1996
    25. 賴高廷,“高亂度合金微結構及性質探討” ,國立清華大學材料科學工程研究所碩士論文, 1998
    26. 許雲翔, “以FCC及BCC元素為劃分配製等莫耳多元合金系統之研究” ,國立清華大學材料科學工程研究所碩士論文, 2000
    27. 洪育德, “Cu-Ni-Al-Co-Cr-Fe-Si-Ti 高亂度合金之探討”, 國立清華大學材料科學工程研究所碩士論文,2001
    28. J. R. Scully, ” Polarization resistance method for determination of instantaneous corrosion rates”, Corros., 56 (2000) 199-204
    29. W. Stephen Tait, “An introduction to electrochemical corrosion testing for practicing engineers and scientists”, p.48

    30. Denny A. Jones, ”Principles and Prevention of Corrosion” (Prentice-Hall International, UK, 1996)
    31. Herbert H. Uhlig and R. Winston Revie, “Corrosion and Corrosion Control” (A Wiley Interscience Publication, USA, 1984)
    32. J. Kruger and K. Phyne, Nucl. Chem. Waste Manage, 3 (1982) 205
    33. Z. Szklarska-Smialowska, “Pitting Corrosion of Metal” (NACE, Huston, Texas, 1986)
    34. A. J. Sedriks, Inter. Met. Reviews, 28 (1983) 295
    35. 蔡哲瑋、蔡宇翔、陳瑞凱、葉均蔚,”多元高性能合金強化特性研究”,工研院工業材料研究所計畫成果報告,2005年11月,p.17.
    36. 黃振賢,”機械材料”,新文京開發出版,2000
    37. William D. Callister, Jr. ”Materials Science And Engineering An Introduction” (Wiley, Fifth Edition, 1999)
    38. 王彥淳, “AlxCo1.5CrFeMoyNi1.5Ti0.5 (x, y =0, 0.1, 0.2) 高熵合金機械性質與微結構之研究”, 國立清華大學材料科學工程研究所碩士論文,2007
    39. A. A. Mazhar, S. T. Arab, and E. A. Noor, ”The role of chloride ions and pH in the corrosion and pitting of Al-Si alloys”, J. Appl. Electrochem., 31 (2001) 1131-1140
    40. M. A. Quraishi, Danish Jamal, “Dianils as new and effective corrosion inhibitors for mild steel in acidic solutions”, Mater. Chem. and Phys., 78 (2003) 608–613
    41. Gamal K. Gomma, “Corrosion of low-carbon steel in sulphuric acid solution in presence of pyrazole-halides mixture”, Mater. Chem. and Phys., 55 (1998) 241-246
    42. E.J. Kelly, “Anodic dissolution and passivation of titanium in acidic media”, J. Electrochem. Soc., 126 (1979) 2064-2075
    43. M. H. Guo, Q. M. Wang, J. Gong, C. Sun, R. F. Huang, L. S. Wen, “Oxidation and hot corrosion behavior of gradient NiCoCrAlYSiB coatings deposited by a combination of arc ion plating and magnetron sputtering techniques”, Corros. Sci., 48 (2006) 2750-2764
    44. H. L. Du, A. Aljarany, P. K. Datta, J. S. Burnell-Gray, “Oxidation behaviour of Ti–46.7Al–1.9W–0.5Si in air and Ar–20%O2 between 750 and 950℃”, Corros. Sci., 47 (2005) 1706-1723
    45. P. R. Wilson, Z. Chen, “The effect of manganese and chromium on surface oxidation products formed during batch annealing of low carbon steel strip”, Corros. Sci., 49 ( 2007) 1305-1320
    46. J. H. Xiang, Y. Niu, F. Gesmundo, “The oxidation of two ternary Fe–Cu–10 at.% Al alloys in 1atm of pure O2 at 800–900℃”, Corros. Sci., 47 (2005) 1493-1505
    47. J. H. Xiang, Y. Niu, F. Gesmundo, ” Oxidation of Two Ternary Fe–Cu–5 at.% Al Alloys in 1 atm of Pure O2 at 800°C”, Oxid. Met., 61 (2004) 403-421
    48. F. Gesmundo, F. Viani, Y. Niu, “High-temperature oxidation behavior of pure Ni3Al”, Oxid. Met., 45 (1996) 51-72
    49. F. Gesmundo, F. Viani, Y. Niu, “The internal oxidation of two-phase binary alloys beneath an external scale of the less-stable oxide”, Oxid. Met., 47 (1997) 355-380

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE