簡易檢索 / 詳目顯示

研究生: 莊立欣
Chuang
論文名稱: 陶鐵磁多層膜之巨磁阻現象及交互作用力之研究
Study of exchange coupling and GMR effect in ferrimagnetic multilayers
指導教授: 賴志煌
Chih-Huang Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 86
中文關鍵詞: 巨磁阻陶鐵磁多層膜
外文關鍵詞: GMR, Ferrimagnetic multilayers, RKKY
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從非晶形稀土-過渡(RE-TM)金屬薄膜,被發現具有垂直異向性後,成為最具有潛力的磁光紀錄薄膜,就開始受到廣泛的研究。由於RE-TM金屬薄膜具有兩個磁矩相反之磁區,因此在磁性多層膜交互作用力的探討上,就多了許多複雜及有趣的現象。本論文是在探討利用濺鍍製程製造之雙層磁光薄膜(TbFeCO、GdFeCo),在加入一中間層(Cu)之後,產生了磁矩垂直膜面的巨磁阻(Giant magnetoresistance)現象,而且由調變磁性層之成份,可獲得室溫之反向巨磁阻(Inverse GMR)現象並研究磁阻隨著薄膜成分、厚度改變之影響。
    此外,我們改變中間層的厚度,去研究其磁性質的變化,發現了TbFeCo及GdFeCo的矯頑場(Coercivity)具有隨著Cu厚度增加而震盪的情形,推測陶鐵磁薄膜由於Fe/Cu/Fe及Co/Cu/Co介面的存在,具有RKKY效應。在磁性薄膜的交互異向性方面,則由於陶鐵磁多層膜的交換場(Bias field)為正值,發現此作用力為一長距離之作用力,非一般所認為的必須在磁性層相接時才會有交換場之存在。


    After rare-earth and transition-metal (RE-TM) thin films have been discovered to possess perpendicular anisotropy energy, it became the most popular candidate of magneto-optical recording media and appealed a lot of attention. Because RE-TM thin film has two opposite magnetic sub-lattices, we find many complex and interesting phenomenons.
    This thesis discusses perpendicular giant magnetoresistance in the sandwich structure TbFeCo/Cu/GdFeCo. Then we changed the component of magnetic layer to obtain the inverse giant magnetoresistance at room temperature and observed the changes of MR ratio.

    In addition, we altered the thickness of spacer to investigate the differences of magnetic properties. We discovered that the coercivity (Hc) of TbFeCo and GdFeCo oscillate with increasing the thickness of Cu. Due to this oscillation, we concluded that ferrimagnetic materials also behave RKKY effect. On the magnetic anisotropic exchange coupling, we found that the bias field of ferrimagnetic multilayers can be manipulated depending on the composition. If ferromagnetic layers were TM-TM, the bias field was negative. On the other hand, for RE-TM multilayers, the bias field become positive, which is quite different from ferromagnetic-antiferromagnetic coupling, and this can be explained by sublattice coupling.

    目錄 中文摘要 I 英文摘要 II 誌謝 Ⅲ 目錄 Ⅳ 圖目錄 Ⅶ 第一章、緒論 1 1.1研究動機 1 1.2論文概要 2 第二章、理論背景 3 2.1磁阻簡介 3 2.2巨磁阻效應 4 2.3反向巨磁阻效應 6 2.4稀土-過渡金屬的磁性質 9 2.5交換異向性 11 2.51 Ideal Interface Model 12 2.6 Kobayashi Model 15 2.7 RKKY效應 21 第三章 實驗設備與分析儀器 23 3.1 製程設備 (六靶濺鍍機系統) 23 3.11 濺鍍系統主體結構分析 25 3.2 α-step膜厚分析 27 3.3 拉塞福背向散射分析 (RBS) 28 3.4原子力顯微鏡薄膜粗糙度觀察 (AFM) 29 3.5四點探針之磁阻量測 32 3.6磁光科爾效應分析儀 (MOKE) 34 3.7 樣品振盪磁測儀 (VSM) 40 第四章、實驗步驟 41 4.1 實驗流程 41 4.2 濺鍍系統的準備 42 4.21靶材的準備 42 4.22基板的清洗 42 4.3真空腔的抽氣 43 4.4薄膜成長須注意之事項 43 4.5磁性多層膜(SiNx/TbFeCo/Cu/GdFeCo/SiNx)的成長 44 第五章、實驗結果與討論 46 5.1 TbFeCo/Cu/GdFeCo磁光多層膜之巨磁阻現象的探討 46 5.11單層磁阻效應 49 5.12磁阻大小隨著薄膜厚度的變化 50 5.13薄膜成分對磁阻大小的影響 51 5.14反向巨磁阻效應(Inverse GMR) 52 5.2磁矩排列方式對交互作用力之影響 53 5.3長距離(long range)的交互作用力 59 5.4 RKKY效應 66 5.41 RKKY效應(TM-TM) 66 5.42 RKKY效應(RE-TM) 71 第六章、結論 79 參考文獻 80 著作發表 81

    參考文獻
    [1] H. Hasegawa, Phys. Rev. B 51 (1995) 3655
    [2] B. Dieny, J. Magn. Magn. Mater. 136(1994) 335.
    [3] P. Chaudhari, J.J. Cuomo and R.J. Gambino, IBM J. Res. Dev. 11(1973) 66.
    [4] T. Kobayashi, H. Tsuji, S. Tsunashima and S. Uchiyama, Jap. Journal of appl. Phy. 20(1981) 2089.
    [5] C. Peng, S. K. Lee, and S. G. Kim, J. Magn. Magn. Mater. 162(1996) 362.
    [6] J. P. C. Bernards, D. Raasch, G. Much, and C. Clausen, J. Magn. Magn. Mater. 155(1996) 370.
    [7] S. Becker, H. Rohrmann, and K.ROll, J. Magn. Magn. Mater., 171(1997) 225
    [8] R. Hunt, IEEE Trans. Magn. MAG-7, 150 (1971)
    [9] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988)
    [10] H. Kano, K. Kagawa, A. Suzuki, A. Okabe, K. Hayashi and K. Aso, Appl. Phys. Lett. 63, 2839 (1993)
    [11] A. Fert and I. A. Campbell, J. Phys. F: Metal Phys. 6, (1976) 849
    [12] P. E. Camley and J. Barnas, Phys. Rev. Letter, 63 (1989) 664.
    [13] S. S. Parkin, Phys. Rev. Letter 71 (1993) 1641.
    [14] C. Bellourd, H. D. Rapp, B. George, Phys. Rev. B, 53 (1996) 5082
    [15] oStanley FE, Perez M, Marrows CH, EUROPHYS LETT 49(2000) 528.
    [16] J. P. Renard, P. Bruno, R. Megy, Phys. Rev. B 51 (1995) 12821.
    [17] J. M. George, L. G. Pereira, A. Barthelemy, A. Fert, Phys. Rev. Letter, 72 (1994) 408
    [18] W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956)
    [19] W. H. Meiklejohn and C. P. Bean, Phys. Rev. 105, 904 (1957)
    [20] A. P. Malozemoff, Phys. Rev. B. 35, 3679 (1987)
    [21] D. Mauri, H. C. Siegmann, P. S. Bagus and T. Imagawa, J. Appl. Phys. 79, 1604 (1996)
    [22] A. Takahashi, J. Magn.Soc. Jpn. 19s1 (1995) 273.
    [23] C.Prados, E. Marinero, A. Hernando, J. Magn. Magn. Mater., 165 (1997) 414.
    [24] R. Sbiaa, H. Le Gall, Y. BraIk, J. M. Desvignes, IEEE Trans. Magn. 31(1995) 3274.
    [25] J. Kondo:"Thoery of Dilute Magnetic Alloy",in Solid state physics, 23 (1969) 183.
    [26] T. Kasuya: Progr. Theoret. Phys.(Japan) 16 (1956) 45.
    [27] M.A.Rudrman, C. Kittel, Phys. Rev. 96 (1954) 99.
    [28]Voigt, W. "Magneto and Electro Optik", Teubner, Leiptig (1908)
    [29]Hulme, H. R. "Faraday effect in ferromagnetics", Pro, Roy. Soc., A135, (1932) 237
    [30]Y. Souche and J. M. Alameda, Materials Research Society, V150, 165
    [31] G. Binasch, P Grunberg, F. Saurenbach, W. Zinn, Phys. Rev. B 39 (1989) 4828
    [32] N. Persat, A. Dinia, J.P. Jay, C. Meny, P. Panissod, J. Magn. Magn. Mater., 164 (1996) 37
    [33] F. Petroff, A. Barthelemy, D. H. Mosca, D.K. Lottis, and A. Fert, Phys. Rev. B 44 (1991) 5355
    [34] L.B. Steren, A. Barthelemy, J. L. Duvail, A. Fert, R. Morel, and F. Petroff, Phys. Rev. B 51 (1995) 292
    [35] D. H. Mosca, F. Petroff, A. Fert, P. A. Schroeder, W. P. Pratt, and R. Loloee, J. Magn. Magn. Mater. 94 (1991) 1
    [36] S. P. Parkin, N. More, and K. P. Roche, Phys. Rev. Lett. 64 (1990)2304.
    [37] M. T. Johnson, S. T. Purcell, N. W. E. Mcgee, R. Coehoorn, Phys. Rev. Letter 68 (1992) 2688
    [38] T. Takayama and K. Hasegawa, Proc. 4th Int. Conf. On Rapidly Quenched Metals, (1981) 915
    [39] L. Thomas, A. J. Kellock, and S. S. P. Parkin, J. Appl. Phys. 87 (2000) 5061
    [40] T. Mewes, B. F. P. Roos, S. O. Demokritov, J. Appl. Phys. 87 (2000) 5064.
    [41] O. Redon, P.P. Freitas, J. Appl. Phys. 83 (1998) 2851
    [42] N. J. Gokemeijer, T. Ambrose, and C. L. Chien, Phys. Rev. Letter 79 (1997) 4270
    [43] M. Kowalewaki, B. Heinrich, T. C. Schulthess, W. H. Butler, IEEE Trans. Magn. 34 (1998) 1225

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE