研究生: |
林致遠 Chih-Yuan Lin |
---|---|
論文名稱: |
鐵基塊狀非晶及塊狀奈米晶軟磁合金 Fe-Based Bulk Amorphous and Bulk Nanocrystalline Soft Magnetic Alloys |
指導教授: |
金重勳
Tsung-Shune Chin |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 173 |
中文關鍵詞: | 非晶材料 、鐵基 、軟磁 、塊狀非晶 、金屬玻璃 |
外文關鍵詞: | amorphous alloys, Fe-based, soft magnetic, bulk amorphous, metallic glass |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鐵基非晶態軟磁合金大量被應用於配電變壓器鐵芯,其優異軟磁特性及低能耗,大量減少能源損失並達到環保目的。本研究在於開發新式鐵基塊狀非晶合金,並研究熱性質、磁性質及機械性質。鐵基簡單三元塊狀非晶合金於此研究中首先成功開發,成分為FeaMbBc,M元素的選擇原則為 (1) M為原子尺寸為鐵之130%以上的元素 (2) M與Fe在富Fe側有共晶點。符合其選擇原則之原子為鈧(Sc)、釔(Y)、鏑(Dy)、鈥(Ho)以及鉺(Er),此鐵基簡單三元合金系具強非晶形成能力可鑄造出直徑1~2 mm以上的非晶棒材,其塊狀非晶形成成分範圍為3 < b < 10、18< c < 27。結晶溫度高於860 K,飽和磁化量1.2~1.5 T,矯頑磁力低於40 A/m,片電阻率高於200 □□-cm。此五種合金系中,以Fe-Y-B合金系最具工業應用潛力,本研究以Fe-Y-B合金系為主軸,研究其相關性質及添加第四元素的影響。在Fe-Y-B合金系中,結晶溫度隨Y、B大幅上升:887~986 K。飽和磁化量隨著Y含量增加而大幅降低,在Fe78-xYxB22中由1.47 (x = 4) 降至1.1 T (x = 9),於Fe76Y4B20得最高的飽和磁化量達1.56 T。在Fe72-yCoyY6B22及Fe72-zNizY6B22合金系,研究加入鈷(Co)、鎳(Ni)取代Fe的影響,結果顯示在維持塊狀非晶形成能力下對Co, Ni的添加有極大的包容度:Co ≤ 36 at%、Ni≤ 15 at%,對於調整磁性質有極大的自由度。結晶溫度隨Co、Ni的加入少量下降,其飽和磁化量隨Co, Ni增加由1.47 T降至0.95 T。為促進工業應用性,研究加入他種元素取代釔以減釔元素在高溫時的高氧化性,並維持其非晶形成能力及軟磁特性。研究發現少量Nb, Ta(2 at%)對於Y的取代可大幅增進非晶形成能力,可製作直徑達4 mm非晶棒材,並同時維持良好軟磁特性,極高的抗壓強度超過4000 MPa。本研究亦提出“結晶及停止模型”來開發新式塊狀奈米晶合金,成功在Fe-Y-Nb-Cu-B合金系製作出直徑達2 mm的塊狀奈米晶合金。此理論模型亦在Fe-Si-B-Nb 及Cu-Zr-Al 合金系中獲得驗証得到其塊狀奈米晶合金。本研究所開發出之鐵基簡單三元塊狀非晶合金及其延申成分,以及所提出之奈米晶合金製作方法,開拓出一新的學術領域研究方向以及對於工業應用有極大的價值。
This work focused on the development and study of Fe-based soft magnetic bulk metallic glasses (BMGs) and a strategy to produce bulk nanocrystalline alloys (BNCAs). Ternary Fe-based bulk metallic glasses were for the first time in the world developed. The BMG research contains two parts: (1) Ternary Fe-R-B (R= Sc, Y, Dy, Ho and Er). (2) Quaternary, Fe-(Co or Ni)-Y-B and Fe-Y-(Nb or Ta)-B BMG systems. Thermal properties, glass forming ability and magnetic properties were investigated. Ternary Fe-based BMGs represented by the formulae FeaMbBc are based on two simple selection rules: (1) M is an element with atomic radius at least 130% that of Fe; (2) M possesses an eutectic point with Fe and the M-Fe eutectic is at the Fe-rich end. The M elements, Sc, Y, Dy, Ho and Er fulfill the two rules exhibit BMG capability at the wide composition range, in atomic %, 3 < b < 10, 18< c < 27, whereas a+b+c = 100. It is much remarkable that bulk amorphous state is achievable with only 3 elements (conventional ones 4 to 7 elements). The ternary BMGs thus developed are characteristic of high saturation magnetization 1.2 to 1.56 T, low coercivity less than 40 A/m, and high electrical resistivity, larger than 200 microphm-cm. Among the explored ternary BMGs, Fe-Y-B alloys show the highest saturation magnetization 1.56 T. The properties of subsequently modified Fe-Y-B by Co, Ni and other transition metal (Nb and Ta) were also investigated. It shows a wide composition range retaining the BMG capability while replacing Fe by Co or Ni revealing a great advantage in modifying the magnetic properties to suit various industrial applications. The partial replacement of Y by Nb or Ta greatly improves the GFA and also retains the soft magnetic properties. The reduction of Y content to decrease the high chemical reactivity to improve industrial production is achieved. The Fe-Y-Nb-B and Fe-Y-Ta-B BMG exhibits extreme high compressive strength above 4000 MPa.
New bulk nanocrystalline alloys were successfully achieved in Fe-Y-Nb-Cu-B, Fe-Si-B-Nb and Cu-Zr-Al alloy systems according to proposed “crystallization-and stop” model including (1) there is at least one principal element (PE) that dominates the crystallization temperature (Tx) and the Tx increases steeply with PE concentration, (2) the PE is barely soluble in the primary crystallites so that they pile up around the crystallizing nano-grains hence the Tx is manifestly increased locally, (3) once the increased Tx is higher than the raised sample temperature (due to heat of crystallization), the crystallization will be stopped to maintain a nano-grain structure, and (4) a nucleation agent is much helpful to enhance nucleation frequency hence reduce the resultant nano-sizes. The development of this model unveils a simpler and more practical way to design an alloy which can achieve bulk nanocrystallization.
[1] Clinton W J, The speech, National Nanotechnology Initiative Leading to the Next Industrial Revolution, 2000
[2] Polk DE, Giessen BC, In Rapid Solidfication Technology Source Book ASM Metals Park Ohio 1983
[3] Luborsky FE “Amorphous Metallic Alloys” Butterworths Monographs in Materials London UK 1983
[4] Porter D A, Easterling K E “Phase Transformations in Metals and Alloys” Chapman and Hill New York USA 186 1991
[5] Porter DA and Easterling K E “Phase Transformations in Metals and Alloys” Chapman and Hill New York USA 287 1991
[6] Uhlmann DR, J Non-Cryst Solids 7 337 1972
[7] Kramer, J Annln Phys 37 19 1934
[8] Bremer A, Couch DE, Williams EK, J Res Natn Bur Stand 44 109 1950
[9] Klement W, Willens R H and Duwez P Nature 187 869 1960
[10] Duwes P, Trans Am Soc Metals 60 607 1967
[11] Chen HS, Rep Prog Phys 43 353 1980
[12] Inoue A, Ohtera K, Kita K and Masumoto T, Jpn J Appl Phys 27 L2248 1988
[13] Inoue A, Masumoto T, Mater Sci Eng A173 1 1993
[14] Inoue A, Kawamura Y, Matsushita M, Hayashi K, Koike J, J Mater Res 16 1894 2001
[15] Men H, Hu ZQ, Xu J, Scripta Mater 46 699 2002
[16] Ma H, Xu J, Ma E Appl Phys Lett 83 2793 2003
[17] Ren YL, Zuo JH, Qiu KQ, Zhang H F, Hu Z Q Intermetallics 12 1205 2004
[18] Xu YK, Ma H, Xu J, Ma E, Acta Mater 53 1857 2005
[19] Kim D, Lee BJ, Kim NJ, Scripta Mater 52 969 2005
[20] Yuan GY, Qin CL, Inoue A, J Mater Res 20 394 2005
[21] Liu WY, Zhang HF, Hu ZQ, Wang H, Yao X D, Mater Sci Forum 488 211 2005
[22] Ma H, Zheng Q, Xu J, Li Y, Ma E, J Mater Res 20 2252 2005
[23] Inoue A, Zhang T, and Masumoto T, Mater Trans JIM 30 965 1989
[24] Okmura H, Inoue A, and Masumoto T, Mater Trans JIM 32 593 1991
[25] Okmura H, Inoue A, and Masumoto T, Jpn J Appl Phys 31 343 1992
[26] Inoue A, ,Nakamura T, Sugita T, Zhang T, Masumoto T, Mater Trans JIM 34 351 1993
[27] Nagendra N, Ramamurty U, Goh T T, Li Y, Acta Mater 48 2603 2000
[28] Lu Z P, Hu X, Li Y, Ng S C, Mater Sci Eng A304 679 2001
[29] Tan H, Zhang Y, Li Y, Intermetallics 10 1203 2002
[30] Lu ZP, Li Y, Liu CT, J Appl Phys 93 2862003
[31] Tan H, Zhang Y, Ma D, Feng YP, Li Y, Acta Mater 51 4551 2003
[32] Lee ML, Li Y, Schuh CA, Acta Mater 52 4121 2004
[33] Li R, Pang SJ, Men H, Ma CL, Zhang T, Scripta Mater 54 1123 2006
[34] Inoue A, Zhang T, Masumoto T, Mater Trans JIM 31 177 1990
[35] Zhang T, Inoue A, Masumoto T, Mater Trans JIM 32 1005 1991
[36] Peker A, Johnson WL, Appl Phys Lett 63 2342 1993
[37] Inoue A, Zhang T, Mater Trans JIM 36 1184 1995
[38] Frankwicz PS, Ram S, Fecht HJ, Appl Phys Lett 68 2825 1996
[39] Wang WH, Wei Q, Bai HY, Appl Phys Lett 71 58 1997
[40] Gilbert CJ, Ritchie RO, Johnson WL, Appl Phys Lett 71 476 1997
[41] Kubler A, Eckert J,, Gebert A, Schultz L, J Appl Phys 83 3438 15 1998
[42] Xing LQ, Eckert J, Loser W, Schultz L, Appl Phys Lett 73 2110 12 1998
[43] Xing LQ, Eckert J, Loser W, Schultz L, Appl Phys Lett 74 664 1999
[44] Gilbert CJ, Ager JW, Schroeder V, Ritchie RO, Lloyd JP, Graham JR, Appl Phys Lett 74 3809 1999
[45] Chen MW, Zhang T, Inoue A, Sakai A, Sakurai T, Appl Phys Lett 75 1697 1999
[46] Fan C, Li CF, Inoue A, Haas V, Phys Rev B 61 R3761 2000
[47] He G, Chen GL, Bian Z, Intermetallics 8 481 2000
[48] Inoue A, Intermetallics 8 455 2000
[49] Lfler JF, Bossuyt S, Glade SC, Johnson WL, Wagner W, Thiyagarajan P, Appl Phys Lett 77 525 2000
[50] Kuhn U, Eckert J, Mattern N, Schultz L, Appl Phys Lett 77 3176 2000
[51] Li CF, Inoue A, Phys Rev B 63 172201 2001
[52] Eckert J, Kuhn U, Mattern N, Reger-Leonhard A, Heilmaier M, Scripta Mater 44 1587 2001
[53] Daewoong S, Asoka-Kumar P, Dauskardt RH, Acta Mater 50 537 2002
[54] Wada T, Zhang T, Inoue A, Mater Trans 43 2843 2002
[55] Saida J, Matsushita M, Inoue A, Intermetallics 10 1089 2002
[56] Chen W, Wang Y, Qiang J, Dong C, Acta Mater 51 1899 18 2003
[57] Das J, Loser W, Kuhn U, Eckert J, Roy SK, Schultz L, Appl Phys Lett 82 4690 2003
[58] Wen P, Tang MB, Pan MX, Zhao DQ, Zhang Z, Wang WH, Phys Rev B 67 212201 2003
[59] Pekarskaya E, Lfler JF, Johnson WL, Acta Mater 51 4045 2003
[60] Li H, Subhash G, Gao XL, Kecskes LJ, Dowding RJ, Scripta Mater 49 1087 2003
[61] Zhang JZ, Zhao YS, Nature 430 332 2004
[62] Bakkal M, Shih AJ, Scattergood RO, Liu CT, Scripta Mater 50 583 2004
[63] Turneaure SJ, Winey JM, Gupta YM, Appl Phys Lett 84 1692 2004
[64] Yamasaki M, Kagao S, Kawamura Y, Yoshimura K, Appl Phys Lett 84 4653 2004
[65] Zhang JH, Zhao YS, NATURE 430 332 2004
[66] Loser W, Das J, Guth A, Klauss HJ, Mickel C, Kuhn U, Eckert J, Roy SK Schultz L, Intermetallics 12 1153 2004
[67] Duan G Xu DH Zhang Q Zhang GY Cagin T Johnson WL Goddard WA Phys Rev B 71 224208 2005
[68] Fan C, Choo H, Liaw PK, Scripta Mater 53 1407 2005
[69] Kim KB, Yi S, Choi-Yim H, Das J, Xu W, Johnson WL, Eckert J, Acta Mater 54 3141 2006
[70] Venkataraman S, Biswas K, Wei BC, Sordelet DJ, Eckert J,, J Phys D-Appl Phys 39 2600 2006
[71] Li HQ, Tao KX, Fan C, Liaw PK, Choo H, Appl Phys Lett 89 041921 2006
[72] Fan C, Liaw PK, Haas V, Wall JJ, Choo H, Inoue A, Liu CT Phys Rev B 74 014205 2006
[73] Yan M, Zou J, Shen J, Acta Mater 54 3627 2006
[74] Conner RD, Johnson WL, Scripta Mater 55 645 2006
[75] Qiu CL, Chen Q, Liu L, Chan KC, Zhou JX, Chen PP, Zhang SM, Scripta Mater 55 605 2006
[76] Yang H, Wang JQ, Li Y, J Alloy Compd 422 86 2006
[77] Iqbal M, Akhter JI, Sun WS, Zhang HF, Hu ZQ, J Alloy Compd 422 218 2006
[78] Inoue A, Nishiyama N, Matsuda T, Mater Trans JIM37 181 1996
[79] He Y, Schwarz RB, Archuleta JI Appl Phys Lett 69 1861 1996
[80] Schwarz RB, He Y, Mater Sci Forum 231 235 1997
[81] Nishiyama N, Inoue A, Mater Trans JIM 38 464 1997
[82] Inoue A, Negishi T, Kimura HM, Zhang T, Yavari AR Mater Trans JIM 39 318 1998
[83] Shen TD, Schwarz RB, Thompson JD, J Appl Phys 85 4110 1999
[84] Yokoyama Y, Nishiyama N, Fukaura K, Sunada H, Inoue A, Mater Trans JIM 40 696 1999
[85] Haruyama O, Kimura H, Inoue A, Nishiyama N, Appl Phys Lett 76 2026 2000
[86] Chu JP, Chiang CL, Nieh TG, Kawamura Y, Intermetallics 10 1191 2002
[87] Ma CL, Inoue A, Mater Trans 43 3266 2002
[88] Ma CL, Inoue A, Mater Trans 44 188 2003
[89] Griesche A, Macht MP, Garandet JP, Frohberg G J, Non-Cryst Solids 336 173 2004
[90] Liu L, Inoue A, Zhang T, Mater Trans 46 376 2005
[91] Kapaklis V, Schweiss P, Politis C, Adv Enh Mater 7 123 2005
[92] Takenaka K, Wada T, Nishiyama N, Kimura H, Inoue A, Mater Trans 46 1720 2005
[93] Griesche A, Macht MP, Frohberg G, Scripta Mater 53 1395 2005
[94] Hirotsu ,Y Nieh TG, Hirata A, Ohkubo T, Tanaka N, Phys Rev B 73 012205 2006
[95] Yao KF Ruan F Yang YQ Chen N Appl Phys Lett 88 122106 2006
[96] Wada T, Kinaka M, Inoue A, J Mater Res 21 1041 2006
[97] Chen HS, Acta Mater 22 15051974
[98] Zhang T, Inoue A, Mater Trans JIM 44 1143 2004
[99] Schroers J, Johnson WL, Appl Phys Lett 84 3666 2004
[100] Zhang LB Pang SJ Ma CL Tao Z J Non-Cryst Solids 352 3103 2006
[101] X H Lin and WL Johnson J Appl Phys 78 6514 1995
[102] Zhang T, and Inoue A, Mater Trans JIM 39 1001 1998
[103] Zhang T, and Inoue A, Mater Trans JIM 40 301 1999
[104] Molokanov VV, Petrzhik MI, Mikhailova TN, Sviridova TA, Djakonova NP, J Non-Cryst Solids 252 560 1999
[105] Zhang T, Inoue A, Mater Sci EngA 304 771 2001
[106] Kim YC, Kim WT, Kim DH, AnnalesDE, CHIMIE-SCIENCE DES MATERIAUX 27 11 2002
[107] He G, Loser W, Eckert J, Acta Mater 51 5223 2003
[108] Kim YC, Kim WT, Kim DH, Mater Sci Eng A375 127 2004
[109] Louzguine-Luzgin DV, Louzguina-Luzgina LV, Kato H, Inoue A, Acta Mater 53 2009 2005
[110] Park JM, Chang HJ, Han KH, Kim WT, Kim DH, Scripta Mater 53 1 2005
[111] Wang Y, Fang YZ, Kikegawa T, Lathe C, Saksl K, Franz H, Schneider JR, Gerward L, Wu FM, Liu JF, Jiang JZ, Phys Rev Lett 95 155501 2005
[112] Jeng IK, Lee PY, Mater Trans 46 2963 2005
[113] Hao GJ, Zhang Y, Lin JP, Wang YL, Lin Z, Chen GL, Mater Lett 60 1256 2006
[114] Jeng IK Lin CK Lee PY Intermetallics 14 957 2006
[115] Akatsuka R Zhang T, Koshiba M and Inoue A, Mater Trans 40 258 1999
[116] Zhang T, Inoue A, Mater Trans 43 708 2002
[117] Choi-Yim H, Xu DH, Johnson WL, Appl Phys Lett 82 1030 2003
[118] Zhang W, Inoue A, Scripta Mater 48 641 2003
[119] Xu DH, Duan G, Johnson WL, Garland C, Acta Mater 52 3493 2004
[120] Qin FX, Zhang HF, Ding BZ, Hu ZQ, Intermetallics 12 1197 2004
[121] Louzguine-Luzgin DV Shimada T Inoue A, Intermetallics 13 1166 2005
[122] Shen BL Chang CT Inoue A, Appl Phys Lett 88 201903 2006
[123] Tien HY Lin CY and Chin TS Intermetallics 14 1075 2006
[124] Amiya K Inoue A, Mater Trans 43 81 2002
[125] Park ES, Kim DH, J Mater Res 19 685 2004
[126] Senkov ON, Scott JM, J Non-Cryst Solids 351 3087 2005
[127] Gorsse S, Orveillon G, Senkov ON, Miracle DB, Phys Rev B 73 224202 2006
[128] Guo F, Joseph S, Gary P, Shiflet J, Appl Phys Lett 83 2575 2003
[129] Park BJ, Chang HJ, Kim DH, Kim WT, Appl Phys Lett 85 6353 2004
[130] Duwez P, Lin SCH, J Appl Phys 38 4096 1967
[131] T Masumoto (Ed) Materials Science Amorphous Metals Ohm Tokyo 1982
[132] Inoue A, Gook JS, Mater Trans JIM 36 1282 1995
[133] Inoue A, Gook JS, Mater Trans JIM 37 32 1996
[134] Inoue A, Shinohara Y, Gook JS, Mater Trans JIM 36 1427 1985
[135] Inoue A, Murakami A, Zhang T, Takeuchi A Mater Trans JIM 38 189 1997
[136] Inoue A, Zhang T, Itoi T, Mater Trans JIM 38 359 1997
[137] Inoue A, Koshiba M, Zhang T, A Makino Mater Trans JIM 38 577 1997
[138] M Koshiba Inoue A, Makino A, J Appl Phys 85 5136 1999
[139] Inoue A, Zhang T, Takeuchi A Appl Phys Lett 71 464 1997
[140] Zhang W, Inoue A, Mater Trans JIM 40 78 1999
[141] Inoue A, Zhang T, Zhang W, Takeuchi A, Mater Trans JIM 37 99 1996
[142] Inoue A, Zhang T, Takeuchi A, Mater Trans JIM 37 1731 1996
[143] Inoue A, Shen BL, Mater Trans JIM 43 2350 2002
[144] Lin CY, Tien HY, Chin TS, Appl Phys Lett 86 162501 2005
[145] Inoue A, Acta Mater 48 279 2000
[146] Inoue A, Mater Trans JIM 36 866 1995
[147] Inoue A, Negishi T, Kimura HM, Zhang T, Yavari AR, Mater Trans JIM 39 318 1998
[148] Masumoto T (ed), Material Science, Amorphous Alloys, Ohmu Tokyo p39 1983
[149] Ma D, Tan H, Wang D, Li Y, Ma E, Appl Phys Lett 86 191906 2005
[150] Tan H, Zhang Y, Ma D, Feng YP, Li Y, Acta Mater 51 4551 2003
[151] Wang D, Li Y, Sun BB Sui ML Lu K Ma E Appl Phys Lett 84 4029 2004
[152] Chen HS, Turnbull D, Acta Matall 17 1021 1969
[153] Lu ZP, Liu CT, Phys Rev Lett 91 115505 2003
[154] Inoue A, Materia Jpn 36 926 1997
[155] Inoue A, Mater Sci Eng A304–306 1 2001
[156] Park ES, Kim DH, Acta Mater 54 2597 2006
[157] (i) M Winter, Web Elements TM Periodic Table, Professional Edition, http//www. Webelements.com, University of Sheffield, UK, 2000
(ii) International Tables for X-Ray Crystallography, Birmingham, England, 1968
[158] Villars P, Prince A, Okamoto H Handbook of ternary alloy phase diagrams Materials Park, OH ASM International 1997
[159] Kissinger HE Anal Chem 29 1702 1957
[160] Turnbull D, Contemp Phys 10 473 1969
[161] Wang D, Tan H, Li Y, Acta Mater 53 2969 2005
[162] M Widom, M Mihalkovic J Mater Res 20 1 2005 (Ab Initio)
[163] Xu D, Lohwongwatana B, Duan G, Johnson WL, C Garland, Acta Mater 52 2621 2004
[164] Ikarashi K, Mizushima T, Makino A, Inoue A, Sci Eng A 304 763 2001
[165] Chiriac H, Lupu N, J Magn Magn Mater 215-216 394 2000
[166] Shen TD, Schwarz RB, Acta Mater 49 837 2001
[167] J Zhang, H Tan, YP Feng, Y Li, Scripta Mater 53 183 2005
[168] X H Lin, W L Johnson, and W K Rhim, Mater Trans, JIM 38 473 1997
[169] Liu C T, Chisholm M F, Miller M K, Intermetallics 10 1105 2002
[170] Zhang Y, Pan MX, Zhao DQ, Wang RJ, and Wang WH, Mater Trans, JIM 41, 1410 2000
[171] Croat JJ, J Appl Phys 53 6932 1982
[172] Ghafari M, Stahl B, Banihashemi SH, M Muller and H Hahn, J Magm & Magm Mater 226 1555 2001
[173] Shen BL, Koshiba H, Inoue A, Kimura H, Mizushima T Mater Trans, JIM 42 (10) 2136
[174] Inoue A , Shen BL, Koshiba H, Kato H, Yavari AR, Acta Materialia 52 1631 2004
[175] Inoue A, Shen BL, Chang CT, Acta Mater 52 4093 2004
[176] Shen J, Chen Q, Sun J, Fan H, Wang G, Appl Phys Lett 86 151907 2005
[177] De Boer FR, Boom R, Mattens WCM, Miedema AR, Niessen AK, in Cohesion in metals, edited by Boer De FR and Pettifor DG North-Holland, Amsterdam, (1989) 217
[178] Song DS, Kim JH, Fleury E, Kim WT, Kim DH J Alloy Compd 389 159 2005
[179] Inoue A, Shen BL, Yavari AR and Greer AL J Mater Res 18 1131 2003
[180] Shen B, Inoue A and Chang C Appl Phys Lett 85 4911 2004
[181] Inoue A, Shen BL, Koshiba H, Kato H, Yavari AR Nat Mater 2 661 2003
[182] Song D S, Kim JH, Fleury E, Kim WT, Kim DH J Alloy Compd 389 159 2005
[183] Imafuku M, Li C, Matsushita M, Inoue A Jpn J Appl Phys 41 219 2002
[184] Makino A, Inoue A, Mizushima T Mater Trans JIM 41 1471 2000
[185] Lu ZP, Liu CT Acta Mater 50 3501 2002
[186] Wang WH J Non-Cryst Solids 351 1481 2005
[187] Inoue A, Shen BL, Ohsuna T Mater Trans 43 2337 2002
[188] Zhang W, Inoue A Appl Lett 80 1610 2002
[189] Gloriant T, Greer AL Nanostruct Mater 10 1998 389
[190] Greer AL, Mater Sci Eng A304–306 2001 68
[191] Wang JQ, Chang XC, Hou WL, Lu K, Hu ZQ Philos Mag Lett 80 349 2000
[192] Hu JF, B Li, Qin HW, Jiang MH IEEE Trans Magn 59 3069 2005
[193] Chen H, He Y, Shiflet GJ, Poon SJ Nature 367 541 1994
[194] He Y, JShiflet G, Poon SJ Acta Metall Mater 43 83 1995
[195] Jiang WH, Atzmon M Appl Phys Lett 86 151916 2005
[196] Hsieh PJ, Lo YC, Huang JC, Ju SP Intermetallics 14 924 2006
[197] Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY Adv Eng Mater 6 299 2004
[198] Lu B, Yi DQ, Liu Y, Liu HQ, Wu BL J Inorg Mater 20 851 2005
[199] Zhang HW, Gopalan R, Mukai T, Hono K Scr Mater 53 863 2005
[200] Lin CY, Lee MC, Chin TS paper submitting to J Phys D 2006
[201] Inoue A, Shen B Mater Trans 43 766 2002
[202] Yu P, Bai HY, Tang MB, Wang WL Acta Mater 51 4045 2003