簡易檢索 / 詳目顯示

研究生: 鍾秉均
Chung, Vincent P. J.
論文名稱: 開發間苯二酚─甲醛氣凝膠之CMOS-MEMS電容式溼度感測器
Development of a CMOS-MEMS RF-aerogel-based Capacitive Humidity Sensor
指導教授: 葉銘泉
口試委員: 方維倫
葉維磬
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 117
中文關鍵詞: CMOS-MEMS電容式感測器相對溼度感測器間苯二酚 -甲醛氣凝膠
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,電容式溼度計以高分子材料聚亞醯胺,倍受業界及學術界所使用。電氣特性方面,聚亞醯胺提供溼度計優異的靈敏度及線性度;從製程整合的角度,聚亞醯胺固化後經由黃光微影製程,可定義出不同的幾何形貌,抑或是透過點膠的方式,填入結構夾層中,再進行固化。因此,聚亞醯胺具有與CMOS-MEMS平台進行整合的好處,對於需要批量化製造之商品無非是一大優勢。間苯二酚-甲醛與聚亞醯胺同為高分子材料,亦具備與CMOS-MEMS平台整合的條件;在材料性質方面,間苯二酚-甲醛的骨架上具有親水性官能基─羥基,透過超臨界乾燥製備成奈米級孔洞之氣凝膠後,更提升了材料與環境接觸的面積,因而對於環境溼度具有更佳之靈敏度表現。
    本研究採用TSMC 0.18 um 1P6M CMOS製程平台,結合後製程金屬濕蝕刻、點膠技術及超臨界乾燥,使氣凝膠成形於垂直平板電容夾層內,實現以間苯二酚-甲醛氣凝膠為感測膜層的CMOS-MEMS 電容式溼度感測器。經一系列之製程與實驗量測結果,凸顯間苯二酚-甲醛氣凝膠的優點,不論在製程整合能力與性能表現上,皆足以與聚亞醯胺材料相比較;本研究主要設計兩種溼度計:Type 1 0.53-um與Type 2 1.91-um電極間距之設計,靈敏度分別為0.591%/%RH 、0.571%/%RH,而反應步階溼度變化20%RH~80%RH的時間為11 s、19 s;與未填入間苯二酚-甲醛氣凝膠之原始結構相比,Type 2元件靈敏度之提升達410.7%RH;Type 1填入間苯二酚-甲醛氣凝膠的溼度計相較PI元件,靈敏度提升209.5%RH。結構設計方面,依循可靠度優化之設計方針─透過氧化矽支柱固定感測間隙,並有效強化薄膜結構主體剛性;此外,融合後製程金屬濕蝕刻之優點,以氧化層包覆感測電極,降低金屬電極與外界環境作用所衍生之問題,確保元件之可靠度。本研究中將溫度計與溼度計作單晶整合,達到環境感測器的目的,並提出針對溼度計作溫度校正的方式。
    後續研究上利用溼度計陣列的結構設計,經由準直的反應式離子蝕刻,定義出柱狀之間苯二酚-甲醛氣凝膠,以期達到高靈敏度與低反應時間之訴求。


    Currently, state-of-the art humidity sensors that have been used in mobile applications are mostly capacitive-based sensors integrated with electronics monolithically and fabricated with the industrial standard CMOS process to achieve a cost-effective solution for accuracy, performance and reliability. As for the moisture sensitive films, polymer-based and especially polyimide-based sensors have been used predominantly inasmuch as the superior properties over wide humidity range and the compatibility with CMOS platforms. However, based on a great deal of on-going researches, polyimide features slow diffusion constant and have long-term stability problems. As a result, RF-Aerogel, shown great potential in humidity sensing and capability to integrate with CMOS platforms, was adopted herein.
    This study presents the design, implementation and characterization of a high-sensitivity capacitive humidity sensor. TSMC 0.18 m CMOS process was used followed by in-house maskless post-processing and pneumatic dispensing of precursors of aerogels to form a vertical parallel-plate (VPP) topology for capacitive sensing. A sensitive material, resorcinol-formaldehyde (RF) organic aerogel, was prepared by the sol-gel method and supercritical fluid (SCF) drying. The low-density RF-aerogels synthesized by this method exhibit high surface areas, high porosities, and mesoporosity, which are beneficial to moisture diffusion and sensing reaction. Despite the sensor response to moisture is non-linear, a minimum sensitivity up to 0.571% capacitance change per percent relative humidity (RH), is achieved. Further measurements show that a response time of 12s and maximum hysteresis of 1.1%RH have been obtained. In addition, a resistive type temperature sensor had been integrated with humidity sensor on the same chip. Furthermore, this study proposed a method to calibrate the temperature-dependent readout of a humidity sensor by means of an on-chip temperature sensor.
    For further investigation, a new kind of sensor topology – VPP array is proposed. In the design, VPP ensures sensors’ sensitivity; meanwhile, RF-aerogels are patterned by plasma etching in column shapes so as to shorten the diffusion path of water vapors and thus reduced response time of the sensor. The aim of this study is to design a high-sensitivity and high-speed humidity sensor.

    摘要 I Abstract III 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 前言 1 1-1-1 溼度計發展現況 3 1-2 文獻回顧 5 1-2-1 相對溼度之感測機制分類 7 1-2-2 電容式溼度計感測材料類別 10 1-2-3 間苯二酚-甲醛氣凝膠 (RF-Aerogel) 17 1-2-4 CMOS-MEMS製程分類 20 1-3 研究動機與目標 22 第二章 溼度感測器設計與分析 37 2-1 TSMC 0.18 mm 1P6M CMOS製程平台 37 2-2 電容式感測原理與溫度補償校正 39 2-2-1 電容式溼度計靈敏度與初始電容 39 2-2-2 溼度計反應時間 41 2-2-3 溼度計溫度補償 44 2-3 元件結構設計與模擬 46 2-3-1 溼度計結構設計與模擬 47 2-3-2 微加熱器結構設計與模擬 50 2-3-1 溫度計結構設計 51 第三章 光罩佈局與後製程結果 63 3-1 溼度計結構佈局 63 3-2 下線晶片後製程 66 3-3 後製程結果 69 第四章 量測結果與討論 83 4-1 結構表面形貌 83 4-2 電容式溼度感測器量測 84 4-3 反應時間與長時間穩定性量測 88 4-4 溫度計元件量測 90 4-5 溼度計之溫度補償讀值 90 第五章 結論 105 5-1 研究成果 105 5-2 未來工作 107 參考文獻 112

    [1] Texas Instruments Inc., http://www.dlp.com/technology/
    [2] Hewlett-Packard Inc., http://www.hp.com/hpinfo/abouthp/histnfacts/museum/
    [3] G. K. Fedder, "CMOS-based sensors," IEEE Sensors, Oct. 30 2005, pp. 125-128.
    [4] H. Baltes, O. Brand, A. Hierlemann, D. Lange and C. Hagleitner, "CMOS MEMS - present and future," The 15th IEEE International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, USA, 24 Jan. 2002, pp. 459-466.
    [5] G. K. Fedder, R. T. Howe, L. Tsu-Jae King and E. P. Quevy, "Technologies for Cofabricating MEMS and Electronics," Proceedings of the IEEE, vol. 96, pp. 306-322, 2008.
    [6] Apple Inc., http://www.apple.com/
    [7] InvenSense Inc., http://www.invensense.com/
    [8] Sitronic Inc., http://www.sitronic.com/
    [9] Measurement Specialists Inc., http://www.meas-spec.com/
    [10] N. S. Lazarus, "CMOS-MEMS Chemiresistive and Chemicapacitive Chemical Sensor System," PhD diss., Carnegie Mellon University, 2012.
    [11] C. Laville and C. Pellet, "Comparison of three humidity sensors for a pulmonary function diagnosis microsystem," Sensors Journal, IEEE, vol. 2, pp. 96-101, 2002.
    [12] Yole Développement Co., http://www.yole.fr/
    [13] Aginova Inc., iCelsius, http://www.icelsius
    [14] Sensirion Inc., http://www.sensirion.com
    [15] iSupply Inc., http://www.isuppli.com/mems-and-sensors/pages/headlines.aspx
    [16] Z. M. Rittersma, "Recent achievements in miniaturised humidity sensors—a review of transduction techniques," Sensors and Actuators A: Physical, vol. 96, pp. 196-210, 2/28/ 2002.
    [17] P. Wiederhold, "The Principles of Chilled Mirror Hygrometry," Sensors Magazine, vol. 17, pp. 46-51, July 2000.
    [18] J. S. Wilson, Sensor Technology Handbook. Amsterdam, Elsevier, 2005, pp. 271-284.
    [19] D. K. Roveti, "Choosing a Humidity Sensor: A Review of Three Technologies," Sensors - The Journal of Applied Sensing Technology, vol. 18, pp. 54-58, 2001.
    [20] M. Kimura, J. Manaka, S. Satoh, S. Takano, N. Igarashi and K. Nagai, "Application of the air-bridge microheater to gas detection," Sensors and Actuators B: Chemical, vol. 25, pp. 857-860, 1995.
    [21] A. Schroth, K. Sager, G. Gerlach, A. Haberli, T. Boltshauser and H. Baltes, "A Resonant Polyimide-based Humidity Sensor," Solid-State Sensors and Actuators, 1995 and Eurosensors IX.. Transducers '95. The 8th International Conference on, 25-29 June 1995, pp. 740-742.
    [22] Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash and T. J. Huang, "High-speed optical humidity sensors based on chiral sculptured thin films," Sensors and Actuators B: Chemical, vol. 156, pp. 593-598, 2011.
    [23] J. Fraden, Humidity and Moisture Sensors, Springer New York, 2004, pp. 393-405.
    [24] Z. Li, H. Zhang, W. Zheng, W. Wang, H. Huang, C. Wang, A. G. Macdiarmid and Y. Wei, "Highly Sensitive and Stable Humidity Nanosensors Based on LiCl Doped TiO2 Electrospun Nanofibers," Journal of the American Chemical Society, vol. 130, pp. 5036-5037, 2008.
    [25] M. S. Perez, B. Lerner, D. E. Resasco, P. D. P. Obregon, P. M. Julian, P. S. Mandolesi, F. A. Buffa, A. Boselli and A. Lamagna, "Carbon Nanotube Integration with a CMOS Process," Sensors, vol. 10, pp. 3857-3867, 2010.
    [26] J. Das, S. M. Hossain, S. Chakraborty and H. Saha, "Role of parasitics in humidity sensing by porous silicon," Sensors and Actuators A: Physical, vol. 94, pp. 44-52, 2001.
    [27] A. Santos, T. Kumeria and D. Losic, "Nanoporous anodic aluminum oxide for chemical sensing and biosensors," TrAC Trends in Analytical Chemistry, vol. 44, pp. 25-38, 3// 2013.
    [28] Y. Yao, X. Chen, J. Zhu, B. Zeng, Z. Wu and X. Li, "The effect of ambient humidity on the electrical properties of graphene oxide films," Nanoscale Research Letters, vol. 7, p. 363, 2012.
    [29] Y.-C. Hu, C.-L. Dai and C.-C. Hsu, "Titanium Dioxide Nanoparticle Humidity Microsensors Integrated with Circuitry on-a-Chip," Sensors, vol. 14, pp. 4177-4188, 2014.
    [30] R. Buchhold, A. Nakladal, G. Gerlach and P. Neumann, "Design studies on piezoresistive humidity sensors," Sensors and Actuators B: Chemical, vol. 53, pp. 1-7, 1998.
    [31] Y. Yao, X. Chen, H. Guo, Z. Wu and X. Li, "Humidity sensing behaviors of graphene oxide-silicon bi-layer flexible structure," Sensors and Actuators B: Chemical, vol. 161, pp. 1053-1058, 2012.
    [32] C.-Y. Lee and G.-B. Lee, "Micromachine-based humidity sensors with integrated temperature sensors for signal drift compensation," Journal of Micromechanics and Microengineering, vol. 13, p. 620, 2003.
    [33] Dwight Look College of Engineering at Texas A&M University, Rockwell Automation Laboratory, http://etidweb.tamu.edu/hsieh/index.html
    [34] Penn State Department of Chemisty, Ran Liu's Personal Webpage, http://research.chem.psu.edu/axsgroup/Ran/research/templatesynthesis.html
    [35] V. K. Khanna and R. K. Nahar, "Effect of moisture on the dielectric properties of porous alumina films," Sensors and Actuators, vol. 5, pp. 187-198, 1984.
    [36] L. Juhász and J. Mizsei, "Humidity sensor structures with thin film porous alumina for on-chip integration," Thin Solid Films, vol. 517, pp. 6198-6201, 2009.
    [37] Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee and H. Park, "Capacitive humidity sensor design based on anodic aluminum oxide," Sensors and Actuators B: Chemical, vol. 141, pp. 441-446, 2009.
    [38] R. K. Nahar, "Study of the performance degradation of thin film aluminum oxide sensor at high humidity," Sensors and Actuators B: Chemical, vol. 63, pp. 49-54, 2000.
    [39] S. W. Chen, O. K. Khor, M. W. Liao and C. K. Chung, "Sensitivity Evolution and Enhancement Mechanism of Porous Anodic Aluminum Oxide Humidity Sensor Using Magnetic Field," Sensors and Actuators B: Chemical, 2014.
    [40] Product Data Sheet, Moisture Image Series Probe, General Electric Company, 2009.
    [41] R. Fenner and E. Zdankiewicz, "Micromachined water vapor sensors: a review of sensing technologies," Sensors Journal, IEEE, vol. 1, pp. 309-317, 2001.
    [42] T. Boltshauser, C. Azeredo Leme and H. Baltes, "High sensitivity CMOS humidity sensors with on-chip absolute capacitance measurement system," Sensors and Actuators B: Chemical, vol. 15, pp. 75-80, 1993.
    [43] U. Kang and K. D. Wise, "A high-speed capacitive humidity sensor with on-chip thermal reset," Electron Devices, IEEE Transactions on, vol. 47, pp. 702-710, 2000.
    [44] M. Dokmeci and K. Najafi, "A high-sensitivity polyimide capacitive relative humidity sensor for monitoring anodically bonded hermetic micropackages," Microelectromechanical Systems, Journal of, vol. 10, pp. 197-204, 2001.
    [45] J. Laconte, V. Wilmart, D. Flandre and J. Raskin, "High-sensitivity capacitive humidity sensor using 3-layer patterned polyimide sensing film," Sensors, 2003. Proceedings of IEEE, 22-24 Oct. 2003, pp. 372-377.
    [46] C.-L. Dai, "A capacitive humidity sensor integrated with micro heater and ring oscillator circuit fabricated by CMOS–MEMS technique," Sensors and Actuators B: Chemical, vol. 122, pp. 375-380, 2007.
    [47] M. J. Lee, J. S. Kim, K.-Y. Kwak and N.-K. Min, "Micromachining of Multilayer Thin Films for High-Speed Humidity Sensor Fabrication," Japanese Journal of Applied Physics, vol. 48, p. 08HG01, 2009.
    [48] C.-L. Zhao, M. Qin and Q.-A. Huang, "A Fully Packaged CMOS Interdigital Capacitive Humidity Sensor With Polysilicon Heaters," Sensors Journal, IEEE, vol. 11, pp. 2986-2992, 2011.
    [49] H. Lee, S. Lee, S. Jung and J. Lee, "Nano-grass polyimide-based humidity sensors," Sensors and Actuators B: Chemical, vol. 154, pp. 2-8, 2011.
    [50] N. Lazarus and G. K. Fedder, "Integrated vertical parallel-plate capacitive humidity sensor," Journal of Micromechanics and Microengineering, vol. 21, p. 065028, 2011.
    [51] N. Lazarus and G. K. Fedder, "Designing a robust high-speed CMOS-MEMS capacitive humidity sensor," Journal of Micromechanics and Microengineering, vol. 22, p. 085021, 2012.
    [52] E. J. Connolly, H. T. M. Pham, J. Groeneweg, P. M. Sarro and P. J. French, "Relative humidity sensors using porous SiC membranes and Al electrodes," Sensors and Actuators B: Chemical, vol. 100, pp. 216-220, 6/1/ 2004.
    [53] J. T. W. Yeow and J. P. M. She, "Carbon nanotube-enhanced capillary condensation for a capacitive humidity sensor," Nanotechnology, vol. 17, p. 5441, 2006.
    [54] M. J. Lee, H. P. Hong, K. H. Kwon, C. W. Park and N. K. Min, "Fast-speed, high-sensitivity polyimide humidity sensors with superhydrophilic carbon nanotube network electrodes," Sensors and Actuators B: Chemical, vol. 185, pp. 97-104, 8// 2013.
    [55] Z. Cheng-Long, Q. Ming and H. Qing-An, "Humidity sensing properties of the sensor based on graphene oxide films with different dispersion concentrations," Sensors, 2011 IEEE, 28-31 Oct. 2011, pp. 129-132.
    [56] D. Ching-Liang and L. De-Hao, "Fabrication of a micro humidity sensor with polypyrrole using the CMOS process," Nano/Micro Engineered and Molecular Systems (NEMS), 2010 5th IEEE International Conference on, 20-23 Jan. 2010, pp. 110-113.
    [57] A. Tételin, C. Pellet, C. Laville and G. N’kaoua, "Fast response humidity sensors for a medical microsystem," Sensors and Actuators B: Chemical, vol. 91, pp. 211-218, 2003.
    [58] L. Maiolo, A. Pecora, F. Maita, A. Minotti, E. Zampetti, S. Pantalei, et al., "Flexible sensing systems based on polysilicon thin film transistors technology," Sensors and Actuators B: Chemical, vol. 179, pp. 114-124, 2013.
    [59] W. Yao, X. Chen and J. Zhang, "A capacitive humidity sensor based on gold–PVA core–shell nanocomposites," Sensors and Actuators B: Chemical, vol. 145, pp. 327-333, 3/4/ 2010.
    [60] F. Molina-Lopez, A. V. Quintero, G. Mattana, D. Briand and N. F. d. Rooij, "Large-area compatible fabrication and encapsulation of inkjet-printed humidity sensors on flexible foils with integrated thermal compensation," Journal of Micromechanics and Microengineering, vol. 23, p. 025012, 2013.
    [61] J. Fraden, Humidity and Moisture Sensors. New York, Springer, 2010, pp. 445-459.
    [62] S. M. a. C. Sotiriou-Leventis, Aerogels handbook [electronic resource]. New York, Springer, 2011.
    [63] J. D. Lemay, R. W. Hopper, L. W. Hrubesh and R. W. Pekala, "Low-Density Microcellular Materials - Introduction," Mrs Bulletin, vol. 15, pp. 19-20, 1990.
    [64] R. W. Pekala, "Organic aerogels from the polycondensation of resorcinol with formaldehyde," Journal of Materials Science, vol. 24, pp. 3221-3227, 1989.
    [65] S. Jones, "Aerogel: Space exploration applications," Journal of Sol-Gel Science and Technology, vol. 40, pp. 351-357, 2006.
    [66] S. Rollié, M. Bruno, A. Ambrogi and C. A. Barbero, "Study of the Resorcinol/Formaldehyde Gel Drying process Using Supercritical CO2," 2nd Mercosur Congress on Chemical Engineering, RJ, Brazil, 14 Aug. 2005.
    [67] B. Hosticka, P. M. Norris, J. S. Brenizer and C. E. Daitch, "Gas flow through aerogels," Journal of Non-Crystalline Solids, vol. 225, pp. 293-297, 1998.
    [68] C.-T. Wang, C.-L. Wu, I. C. Chen and Y.-H. Huang, "Humidity sensors based on silica nanoparticle aerogel thin films," Sensors and Actuators B: Chemical, vol. 107, pp. 402-410, 2005.
    [69] O. B. H. Baltes, G. K. Fedder, C. Hierold, J. Korvink, and O. Tabata, CMOS-MEMS: Advanced Micro and Nanosystems. vol. 2. Weinheim, Germany, WILEY-VCH Verlag GmbH & Co. KGaA, 2005.
    [70] Analog Devices Inc., http://www.adi.com/
    [71] TDK Corp., http://www.global.tdk.com/
    [72] BuyAerogel.com, http://www.buyaerogel.com/,
    [73] Aerogel.org, http://www.aerogel.org/,
    [74] NASA, http://www.nasa.gov/
    [75] H. Shibata, M. Ito, M. Asakursa and K. Watanabe, "A digital hygrometer using a polyimide film relative humidity sensor," Instrumentation and Measurement, IEEE Transactions on, vol. 45, pp. 564-569, 1996.
    [76] C.-T. Ko, S.-H. Tseng and M. S.-C. Lu, "A CMOS Micromachined Capacitive Tactile Sensor With High-Frequency Output," Microelectromechanical Systems, Journal of, vol. 15, pp. 1708-1714, 2006.
    [77] C.-Y. Lee, C.-H. Lin and L.-M. Fu, Techniques in MEMS Devices for Micro Humidity Sensors and Their Applications, Springer US, 2006, pp. 1055-1084.
    [78] R. Koch, "The intrinsic stress of polycrystalline and epitaxial thin metal films," Journal of Physics: Condensed Matter, vol. 6, p. 9519, 1994.
    [79] H. Tani, T. Kubota, T. Kasanami and K. Miyagawa, "Platinum temperature sensor," U.S. Patent 5294910, 1994.
    [80] M.-H. Tsai, C.-M. Sun, Y.-C. Liu, C. Wang and W. Fang, "Design and application of a metal wet-etching post-process for the improvement of CMOS-MEMS capacitive sensors," Journal of Micromechanics and Microengineering, vol. 19, p. 105017, 2009.
    [81] Fujifilm Inc.,
    http://www.fujifilmusa.com/products/specialty_chemicals/polyamide-imide-polymers/index.html
    [82] German Aerospace Center (DLR),
    http://www.dlr.de/mp/en/desktopdefault.aspx/tabid-1620/

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE