簡易檢索 / 詳目顯示

研究生: 鄭凱文
Kai-Wen Cheng
論文名稱: TiO2-RuO2人工超晶格結構演化及特性之研究
Structural Evolution and Characteristics of TiO2-RuO2 Artificial Superlattice
指導教授: 甘炯耀
Jon-Yiew Gan
葉均蔚
Jien-Wei Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 65
中文關鍵詞: 超晶格氧化鈦氧化釕
外文關鍵詞: superlattice, titanium dioxide, ruthenium dioxide
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用具有相同結構,但為不同材料組成的雙氧化物來製作超晶格(Superlattice)結構,出現奇特且異於個別材料在巨觀尺度上的性質,已經引起廣泛研究。如利用應變造成鐵電性質的增強、磁性離子在結構中排列序化而產生鐵磁性等。另外在高溫超導層狀氧化物被發現時,其中發現其結構可視為導電層與絕緣層的交替週期的延伸,使得部分學者開始對以超晶格發展超導性感到興趣。因此,本實驗主要利用RuO2氧化物具有異於氧化物的導電性,以及選用與其結構上匹配的TiO2絕緣氧化物,藉由超晶格的製作,探討其二維結構性質。
    實驗結果發現,TiO2與RuO2以最佳條件下鍍覆在Sapphire(0001)單晶基板上,呈現幾十奈米大小的橢圓晶粒,造成表面粗糙度不佳,而無法在Sapphire上進行超晶格薄膜鍍製。即使選用看似與RuO2匹配性較佳的MgO(100)單晶基板上,在進行每層約2.5nm大小的超晶格薄膜鍍製後,也呈現膜層間界面模糊不清的情況,顯示RuO2與TiO2超晶格薄膜也無法鍍覆在MgO基板上。
    採用直接將TiO2鍍覆在RuO2單晶一維奈米柱上,發現其TiO2是以磊晶(Epitaxy)的方式鍍覆在RuO2奈米柱,並且由EDS成分分析,證實RuO2與TiO2的確在低溫下為互不相溶氧化物。此外,奈米柱發現到有彎曲現象,推測為兩者間熱膨脹係數的差異所致。


    第一章 前言及研究動機 1 1-1 前言..................................................1 1-2 研究動機..............................................2 圖........................................................3 第二章 文獻回顧 4 2-1 TiO2的晶體結構與基本物理性質..........................4 2-2 RuO2的晶體結構與基本物理性質..........................5 2-3 超晶格(Superlattice)................................6 2-3-1 超晶格概念.......................................6 2-3-2 相關的物理效應.............................7 2-3-2-1 共振穿遂(Resonant Tunneling........7 2-3-2-2 超交互作用(Superexchange Interaction)...........8 2-3-2-3 龐磁阻(Colossal Magnetoresistance)..............9 2-3-2-4 鐵電性強化(Ferroelectricity)...................11 2-3-2-5 電流異向性(Anisotropy).........................12 2-3-3 TiO2-RuO2超晶格....................................13 圖.......................................................15 第三章 試樣準備及分析方法 22 3-1 實驗流程.............................................22 3-2 薄膜特性分析設備及方法...............................24 3-2-1 X光繞射儀(XRD)...................................24 3-2-2 掃瞄式探針顯微鏡(SPM)............................25 3-2-3 場發射掃瞄式電子顯微鏡(FE-SEM)...................25 3-2-4 穿透式電子顯微鏡(TEM)............................26 3-2-5 能量分散光譜儀(EDS)..............................27 3-2-6 薄膜橫截面(Cross-Section)電鏡試片製備............27 3-2-7 RuO2-TiO2核殼結構電鏡試片製備......................28 圖表.....................................................29 第四章 實驗結果與討論 29 4-1 TiO2薄膜特性分析.....................................34 4-2 RuO2 -TiO2共鍍薄膜特性分析...........................36 4-3 RuO2薄膜特性分析.....................................37 4-4 RuO2-TiO2超晶格薄膜特性分析..........................38 4-5 RuO2-TiO2核殼結構(Core-Shell Structure)特性分析....40 圖.......................................................44 第五章 結論 59 第六章 未來發展 60 參考文獻 圖表目錄 Fig. 1-1 YBCO超導體層狀結構圖.............................3 Fig. 1-2 RuO2與TiO2之相圖.................................3 Fig. 2-1 TiO2的晶體結構:(a) Anatase相,(b) Rutile相.....15 Fig. 2-2 TiO2以八面體形式組成之結構:(a) Anatase相(corner share ),(b) Rutile相(edge share).....................15 Fig. 2-3 兩獨立量子井耦合之後所產生的情況................16 Fig. 2-4 超晶格中週期數為N時所形成的迷你能帶(miniband).16 Fig. 2-5 以PLD鍍製LaFeO3-LaCrO3超晶格....................17 Fig. 2-6 LaFeO3-LaCrO3超晶格在平行膜面施加0.1T磁場時,其磁化量與溫度的關係圖.........................................17 Fig. 2-7 LaMnO3中Mn3+電子組態示意圖......................18 Fig. 2-8 鄰近錳離子間電子自旋夾角示意圖..................18 Fig. 2-9 在SrTiO3單晶基板上鍍製LaMnO3-SrMnO3超晶格,右圖為結構示意圖.................................................19 Fig. 2-10 (LaMnO3)m-(SrMnO3)n超晶格,在垂直膜面上施加7T的磁場,觀察其阻值對溫度的關係。(m/n:I=0.43/0.15,II=3.9/1.4,III=7.8/2.7,IV:15.5/5.5)....................19 Fig. 2-11 BaTiO3的鈣鈦礦結構。A:高溫立方晶結構,為順電相、B、C:均為室溫正方晶結構,為鐵電相,只是中心Ti4+離子偏離位置不同.....................................................20 Fig. 2-12 (SrZrO3)m/(SrTiO3)m超晶格晶格常數隨著週期性的變化.......................................................20 Fig. 2-13 (SrZrO3)m/(SrTiO3)m超晶格Q-V遲滯曲線(Hysteresis Curve)隨著週期性的變化..................................21 Fig. 2-14 Fe3O4的Spinel結構示意圖,右圖是分層結構圖......21 Fig. 2-15 Fe3O4-NiO超晶格產生的導電率的異向性差異........22 Fig. 3-1 磁控式雙槍濺鍍系統示意圖........................30 Fig. 3-2 基板清洗流程....................................31 Fig. 3-3 實驗架構流程....................................32 Table 3-1 實驗樣品列表...................................33 Table 3-2 TiO2與RuO2薄膜鍍製參數.........................33 Table 3-3 在MgO單晶基板上鍍製TiO2與RuO2超晶格薄膜參數....34 Table 3-4 在SiO2/Si基板上鍍製TiO2與RuO2核殼結構參數......34 Fig. 4-1 TiO2鍍覆在SiO2/Si基板上,鍍膜功率為150W,工作壓力為10 mtorr,不同基板溫度下的XRD圖..........................45 Fig. 4-2 TiO2鍍覆在Al2O3(0001)單晶基板的3D-SPM圖,氬氧比例為10:10,工作壓力為10 mtorr,溫度為300℃................45 Fig. 4-3 TiO2在基板溫度為450℃下,鍍膜功率為180W,鍍覆在Al2O3(0001)單晶基板的XRD圖.............................46 Fig. 4-4 TiO2鍍覆在Al2O3(0001)單晶基板的3D-SPM圖,氬氧比例為15:5,工作壓力為10 mtorr,溫度為450℃.................46 Fig. 4-5 TiO2鍍覆在Al2O3(0001)單晶基板的3D-SPM圖及表面粗糙度分析,氬氧比例為10:10,工作壓力為10 mtorr,溫度為450℃....................................................47 Fig. 4-6 TiO2鍍覆在Al2O3(0001)單晶基板的3D-SPM圖,氬氧比例為5:15,工作壓力為10 mtorr,溫度為450℃.................47 Fig. 4-7 TiO2鍍覆在Al2O3(0001)單晶基板的3D-SPM圖,氬氧比例為10:10,工作壓力為5 mtorr,溫度為450℃.................48 Fig. 4-8 TiO2與RuO2以不同氬氧比例,混鍍覆在SiO2/Si基板上的FE-SEM圖。(a)為15:5,(b)為10:10....................48 Fig. 4-9工作壓力及混鍍RuO2對TiO2成相影響的XRD圖..........49 Fig. 4-10 TiO2與RuO2以Ar:O2=10:10,基板溫度為600℃,混鍍覆在Al2O3(0001)單晶基板上的FE-SEM圖....................49 Fig. 4-11 TiO2與RuO2共鍍覆在Sapphire(0001)單晶基板的3D-SPM圖及表面粗糙度分析.......................................50 Fig. 4-12 RuO2分別鍍覆在MgO(100)及Al2O3(0001)單晶基板的XRD圖.......................................................50 Fig. 4-13 RuO2鍍覆在Al2O3(0001)單晶基板的3D-SPM圖及表面粗糙度分析.......................................................51 Fig. 4-14 RuO2鍍覆在MgO(100)單晶基板的3D-SPM圖及表面粗糙度分析.......................................................51 Fig. 4-15 RuO2鍍覆在MgO(100)單晶基板上,於基板邊緣的FE-SEM圖.......................................................52 Fig. 4-16 RuO2鍍覆在MgO(100)單晶基板上,基板旋轉30度FE-SEM圖.......................................................52 Fig. 4-17 RuO2-TiO2超晶格鍍覆在MgO(100)單晶基板的HR-TEM橫截面(cross-section)圖,倍率為80萬倍....................53 Fig. 4-18 RuO2-TiO2超晶格鍍覆在MgO(100)單晶基板的HR-TEM橫截面(cross-section)之局部放大圖........................53 Fig. 4-19成長於SiO2/Si基板上的RuO2奈米柱TEM照片..........54 Fig. 4-20對不同鍍覆TiO2時間的RuO2-TiO2核殼結構(Core-Shell Structure)XRD圖.........................................54 Fig. 4-21 RuO2鍍覆在SiO2/Si基板的旋轉30度FE-SEM圖........55 Fig. 4-22 TiO2鍍覆在RuO2奈米柱上的旋轉30度FE-SEM圖.......55 Fig. 4-23 RuO2-TiO2核殼結構(Core-Shell Structure)TEM圖,倍率為5萬倍................................................56 Fig. 4-24 RuO2-TiO2核殼結構(Core-Shell Structure)HR-TEM圖,倍率為40萬倍。(b)為(a)圖中奈米柱下方的局部放大圖.56 Fig. 4-25 RuO2-TiO2核殼結構(Core-Shell Structure)的EDS分析,其中TiO2為側邊鍍覆...................................57 Fig. 4-26 RuO2-TiO2核殼結構(Core-Shell Structure)的EDS分析,其中TiO2為完全鍍覆...................................57 Fig. 4-27由彎曲及扭曲造成電子繞射圖形的改變:(a)彎曲情況,(b)扭曲情況............................................58 Fig. 4-28彎曲軸平面與電子束之間關係示意圖:(a)彎曲軸平面與電子束平行,(b)彎曲軸平面與電子束垂直....................59

    1.Zu Rong Dai, Zheng Wei Pan, and Zhong L. Wang, "Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation", Adv. Funct. Mater. 2003, 13, No. 1, 9-24.

    2.Melissa S. Sander, Matthew J. Cote, We Gu, Brain M. Kile, and Carl P. Tripp, "Template-Assisted Fabrication of Dense, Aligned Arrays of Titania Nanotubes with Well-Controlled Dimensions on Substrates", Adv. Mater. 2004, 16, No. 22, 2052-2057.

    3.K. E. Swider, C. I. Metzbacher, P. L. Hagans, and D. R. Rolison, "Synthesis of Ruthenium Dioxide-Titanium Dioxide Aerogels: Redistribution of Electrical Properties on the Nanoscale", Chem. Mater. 1997, 9, 1248-1255.

    4.Marko Hrovat, Janez Holc, Zoran Samardzija, and Goran Drazic, "The extent of solid solubility in the RuO2–TiO2 system", J. Mater. Res., Vol 11, No. 3, Mar 1996.

    5.Navrotsky, A. and O. J. Kleppa, "Enthalpy of the Anatase-Rutile Transformation", Journal of the American Ceramic Society, 50.

    6.M. GOPAL, W. J. MOBERLY CHAN and L. C. De JONGHE, "Room temperature synthesis of crystalline metal oxides", J. Mater. Sci. 32 (1997) 6001.

    7.P. A. COX, "Transition Metal Oxides", 1992, 105.

    8.Keith M. Glassford and James R. Chelikowsky, "Electronic and structural properties of RuO2", Phy. Rev. B, Vol. 47, No. 4, Jan 1993.

    9.L. F. Mattheiss," Electronic structure of RuO2, OsO2 and IrO2", Phys. Rev. B, 13, 2433, 1976.

    10.Huicai Zhong, Greg Heuss, and Veena Misra, "Characterization of RuO2 electrodes on Zr silicate and ZrO2 dielectrics", Appl. Phys. Lett., Vol. 78, No. 8, Feb 2001.
    11.B. W. Dodson, L. J. Schowalter, J. E. Cunningham, F. H. Pollak, "Layered Structures—Heteroepitaxy, Strain, and Metastability", MRS., Vol. 160, 1990.

    12.A. F. J. Levi, "Applied Quantum Mechanics", 2003, 186.

    13.Y.H. Wang, S.S. Li and Pin Ho, "Voltage-tunable dual-mode operation InAlAs/InGaAs quantum well infrared photodetector for narrow- and broadband detction at 10 um," Appl. Phys. Lett., Vol. 62, 621, 1993.

    14.Kenji Ueda, Hitoshi Tabata, Tomoji Kawai, "Ferromagnetism in LaFeO3-LaCrO3 Superlattices", Science, Vol. 280, May 1998.

    15.C. Zener, Phys. Rev. 82, 403, 1951.

    16.J. Verbeeck, O. I. Lebedev, G. Van Tendeloo, and B. Mercey, "SrTiO3(100)/(LaMnO3)m(SrMnO3)n Layered heterostructures: A combined EELS and TEM study", Phys. Rev. B, Vol 66, No. 184426, 2002.

    17.J. Verbeeck, O. I. Lebedev, and G. Van Tendeloo, "Electron energy-loss spectroscopy study of a (LaMnO3)8-(SrMnO3)4 heterostructure", Appl. Phys. Lett., Vol. 79, 2037, 2001.

    18.P. A. Salvador, A.-M. Haghiri-Gosnet, B. Mercey, M. Hervieu, and B. Raveau, "Growth and magnetoresistive properties of (LaMnO3) m(SrMnO3) nsuperlattices", Appl. Phys. Lett., Vol. 75, 2638, 1999.

    19.C. H. Ahn, K. M. Rabe, J.-M. Triscone, "Ferroelectricity at the Nanoscale: Local Polarizationin Oxide Thin Films and Heterostructures", Science, Vol. 303, January 2004.

    20.Takaaki Tsurumi, Takakiyo Harigai, Daisuke Tanaka, Song-Min Nam, Hirofumi Kakemoto, Satoshi Wada, and Keisuke Saito, "Artificial ferroelectricity in perovskite superlattices", Appl. Phys. Lett., Vol. 85, 5016, 2004.

    21.Yuan-Chang Liang and Tai-Bor Wu, "Structural characteristics of epitaxial BaTiO3/LaNiO3 superlattice", J. Appl. Phys., Vol 96, No. 1, July 2004.

    22.J. B. Neatona and K. M. Rabe, "Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices", Appl. Phys. Lett., Vol. 82, 1586, 2003.

    23.M. Sepliarsky, "Ferroelectric properties of KNbO3/KTaO3 superlattices by atomic-level simulation", J. Appl. Phys., Vol 90, No. 9, November 2001.

    24.G. Chern, S. D. Berry, D. M. Lind, H. Mathias, and L. R. Testardi, "Electrical-transport properties of Fe304/NiO superlattices", Phys. Rev. B, Vol 45, No. 7, 1992.

    25.G. Chern, S. D. Berry, D. M. Lind, H. Mathias, and L. R. Testardi, "Modulated electric conductivity in Fe304/NiO superlattices", Appl. Phys. Lett., Vol. 58, 2512, 1991.

    26.D. Guerin, S. Ismat Shah, "Reactive-sputtering of titanium oxide thin films", J. Vac. Sci. Technol. A 15(3), May/Jun 1997.

    27.T. Asanuma and T. Matsutani, "Structural and optical properties of titanium dioxide films deposited by reactive magnetron sputtering in pure oxygen plasma", J. Appl. Phys., Vol. 95, No. 11, 1 June 2004.

    28.Chu-Chi Ting and San-Yuan Chen, "Structural evolution and optical properties of TiO2 thin films preparedby thermal oxidation of sputtered Ti films", J. Appl. Phys., Vol. 88, No. 8, 15 October 2000.

    29.N. Martin, C. Rousselot , C. Savall, F. Palmino, "Characterizations of titanium oxide films prepared by radio frequency magnetron sputtering", Thin Solid Fihns 287 (1996) 154-163.

    30.M. H. Suhail, G. Mohan Rao, and S. Mohan, "dc reactive magnetron sputtering of titanium-structural and optical characterization of TiO2 films", J. Appl. Phys. 71 (3), 1 February 1992.

    31.Y. Z. Lin, J. Y. Gan, Master Thesis, National Tsing-Hua Unversity, Taiwan, "Synthesis of large-area RuO2 nanowires by reactive rf magnetron sputtering method and their field emission properties", 2005.

    32.陳力俊等,“材料電子顯微鏡學”第65頁。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE