研究生: |
趙政漢 Chao, Cheng-Han |
---|---|
論文名稱: |
合併survivin抑制劑與 mTOR抑制劑誘發腎癌細胞調控型細胞壞死之分子機制及療效 Combined Survivin inhibitor and mTOR inhibitor Induce Necroptosis on Renal Cell Carcinoma: Mechanisms and Effects |
指導教授: |
林立元
Lin, Lih-Yuan |
口試委員: |
楊嘉鈴
柯政昌 林立元 周韻家 李易展 |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 109 |
中文關鍵詞: | 腎細胞癌 、survivin抑制劑 、mTOR抑制劑 、調控型細胞壞死 |
外文關鍵詞: | renal cell carcinoma, survivin inhibitor, mTOR inhibitor, necroptosis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腎細胞癌(renal cell carcinoma, RCC)是最致命的泌尿系統癌症之一,在美國2012年研究預估與腎細胞癌相關死因約有13,570人,在臺灣約一年有500人罹患腎細胞癌。新的標靶藥物治療,針對哺乳動物雷帕黴素靶蛋白(mTOR)和酪氨酸激酶作阻斷 ,包括美國食品和藥物管理局(FDA)批准的藥物temsirolimus, everolimus,sorafenib,和sunitinib,是可以改善臨床預後。由於RCC是一個富含血管的疾病,腫瘤血管生成在RCC生長中扮演重要的作用 ,而這些藥物破壞血管生成的能力即代表治療的有效性。然而,耐藥性是一個新興的問題。因為即使目前FDA批准的藥物治療後,雖然其臨床反應率是提高,但大多數晚期RCC患者最終會因為他們的疾病而死亡。因此我們需要建立使用其它不同的標靶藥物合併處理做為一個新策略,來改善臨床預後。
本篇研究發現survivin抑制劑YM155,可以協同增強mTOR抑制劑temsirolimus對於RCC細胞株在體外和體內異種移植(xenograft)模型中的抗癌活性。為了瞭解合併藥物治療抑制腫瘤細胞生長的機制,我們使用了兩種抑制細胞死亡的廣效型抑制藥物,分別是抑制細胞凋亡的Z-VAD-fmk,以及抑制細胞壞死的Necrostatin-1 (Nec-1)。我們研究發現合併temsirolimus與YM155抑制細胞生長的情形可受Nec-1調控,但不受Z-VAD-fmk調控;同時Nec-1的前處理不但可以回復腫瘤細胞受temsirolimus和YM155造成的細胞生長抑制,也可以回復受影響的細胞外型。由於Nec-1是廣泛性抑制細胞壞死的藥物,顯示temsirolimus和YM155的藥物合併處理可能是透過誘發細胞走向調控型細胞壞死(necroptosis)。此外,運用免疫組織化學染色法可發現在合併治療藥物下的移植瘤,其生物標誌物CD31和血管內皮生長因子顯著減少,表示temsirolimus/YM155組合減少了異種移植中組織的血管生成。本篇研究結果發現,合併治療YM155和temsirolimus可被視為對手術治療和/或化療無效的腎細胞癌的一個新的標靶治療,值得後續作進一步研究。
Renal cell carcinoma (RCC) is one of the most lethal urinary malignancies and causes about 13,570 estimated cancer-related deaths in the United States in 2012 . RCC accounts for about 500 new cancer cases per year in Taiwan. New targeted therapy focusing on mammalian target of rapamycin (mTOR) and tyrosine kinase for this disease include the Food and Drug Administration (FDA)-approved agents temsirolimus, everolimus, sorafenib, and sunitinib. All of them have been proved to improve clinical outcomes. Because RCC is a highly vascular disease and angiogenesis involves a critical role in development and progression of RCC, the potency to disrupt angiogenesis is responsible for the effectiveness of these agents. However, drug resistance is an emerging problem because most patients with advanced RCC will eventually die of their disease, even clinical response rates improved after treatment with above FDA-approved agents. A new strategy of cocktail targted therapy to improve clinical outcomes is needed.
We report here that YM155, a survivin suppressor, synergistically augmented the anticancer activity of mTOR inhibitor, temsirolimus in RCC cell lines in vitro and in xenograft models in vivo. In our study, necrostatin-1 was found to prevent the cell death induced by combined treatment, and could recover the cell shape and the intracellular survivin levels. On the other hand, pan-caspase inhibitor Z-VAD.fmk could not either restore the downregulated suvivin level induced by combined treatment of YM155 and temsirolimus or prevent the cell death. It is concluded that the synergistic effect is mainly through the necroptotic pathway. In addition, the temsirolimus/YM155 combination lead to a strong reduction in angiogenesis. The biomarkers, CD31 and VEGF, were markedly reduced under combined treatment by immunohistochemical stains of tumor graft.
These findings suggest that combined treatment of YM155 and temsirolimus may be considered as a new targeted therapy for renal cell carcinoma that is refractory to surgical intervention and/or chemotherapy, and certainly will open an exciting avenue for further investigation.
Aass N, De Mulder PH, Mickisch GH, Mulders P, van Oosterom AT, van Poppel H, Fossa SD, de Prijck L, Sylvester RJ (2005) Randomized phase II/III trial of interferon Alfa-2a with and without 13-cis-retinoic acid in patients with progressive metastatic renal cell Carcinoma: the European Organisation for Research and Treatment of Cancer Genito-Urinary Tract Cancer Group (EORTC 30951). J Clin Oncol 23: 4172-4178
Abraham RT, Wiederrecht GJ (1996) Immunopharmacology of rapamycin. Annu Rev Immunol 14: 483-510
Adida C, Haioun C, Gaulard P, Lepage E, Morel P, Briere J, Dombret H, Reyes F, Diebold J, Gisselbrecht C, Salles G, Altieri DC, Molina TJ (2000) Prognostic significance of survivin expression in diffuse large B-cell lymphomas. Blood 96: 1921-1925
Alimov A, Li C, Gizatullin R, Fredriksson V, Sundelin B, Klein G, Zabarovsky E, Bergerheim U (1999) Somatic mutation and homozygous deletion of PTEN/MMAC1 gene of 10q23 in renal cell carcinoma. Anticancer research 19: 3841-3846
Altieri DC (2010) Survivin and IAP proteins in cell-death mechanisms. Biochem J 430: 199-205
Ambrosini G, Adida C, Sirugo G, Altieri DC (1998) Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting. J Biol Chem 273: 11177-11182
Atkins MB, Hidalgo M, Stadler WM, Logan TF, Dutcher JP, Hudes GR, Park Y, Liou SH, Marshall B, Boni JP, Dukart G, Sherman ML (2004) Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol 22: 909-918
Bali P, Pranpat M, Bradner J, Balasis M, Fiskus W, Guo F, Rocha K, Kumaraswamy S, Boyapalle S, Atadja P, Seto E, Bhalla K (2005) Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem 280: 26729-26734
Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5: 769-784
Brugarolas J (2007) Renal-cell carcinoma--molecular pathways and therapies. N Engl J Med 356: 185-187
Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, Witters LA, Ellisen LW, Kaelin WG, Jr. (2004) Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18: 2893-2904
Carew JS, Giles FJ, Nawrocki ST (2008) Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy. Cancer Lett 269: 7-17
Cersosimo RJ (2009) Renal cell carcinoma with an emphasis on drug therapy of advanced disease, part 1. American journal of health-system pharmacy : AJHP : official journal of the American Society of Health-System Pharmacists 66: 1525-1536
Chan FK, Shisler J, Bixby JG, Felices M, Zheng L, Appel M, Orenstein J, Moss B, Lenardo MJ (2003) A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. The Journal of biological chemistry 278: 51613-51621
Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326 ( Pt 1): 1-16
Cookson BT, Brennan MA (2001) Pro-inflammatory programmed cell death. Trends Microbiol 9: 113-114
Degterev A, Hitomi J, Germscheid M, Ch'en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4: 313-321
Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature chemical biology 1: 112-119
Ding WX, Ni HM, Yin XM (2007) Absence of Bax switched MG132-induced apoptosis to non-apoptotic cell death that could be suppressed by transcriptional or translational inhibition. Apoptosis 12: 2233-2244
Driscoll M, Chalfie M (1991) The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349: 588-593
Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68: 383-424
Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, Negrier S, Chevreau C, Solska E, Desai AA, Rolland F, Demkow T, Hutson TE, Gore M, Freeman S, Schwartz B, Shan M, Simantov R, Bukowski RM (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. The New England journal of medicine 356: 125-134
Fisher RI, Rosenberg SA, Fyfe G (2000) Long-term survival update for high-dose recombinant interleukin-2 in patients with renal cell carcinoma. Cancer J Sci Am 6 Suppl 1: S55-57
Flanigan RC, Salmon SE, Blumenstein BA, Bearman SI, Roy V, McGrath PC, Caton JR, Jr., Munshi N, Crawford ED (2001) Nephrectomy followed by interferon alfa-2b compared with interferon alfa-2b alone for metastatic renal-cell cancer. N Engl J Med 345: 1655-1659
Fuentes-Prior P, Salvesen GS (2004) The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 384: 201-232
Giommarelli C, Zuco V, Favini E, Pisano C, Dal Piaz F, De Tommasi N, Zunino F (2010) The enhancement of antiproliferative and proapoptotic activity of HDAC inhibitors by curcumin is mediated by Hsp90 inhibition. Cell Mol Life Sci 67: 995-1004
Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of non-histone proteins. Gene 363: 15-23
Grossman D, McNiff JM, Li F, Altieri DC (1999a) Expression and targeting of the apoptosis inhibitor, survivin, in human melanoma. The Journal of investigative dermatology 113: 1076-1081
Grossman D, McNiff JM, Li F, Altieri DC (1999b) Expression of the apoptosis inhibitor, survivin, in nonmelanoma skin cancer and gene targeting in a keratinocyte cell line. Laboratory investigation; a journal of technical methods and pathology 79: 1121-1126
Hengartner M (1998) Apoptosis. Death by crowd control. Science 281: 1298-1299
Hengartner MO (2000) The biochemistry of apoptosis. Nature 407: 770-776
Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B, Tschopp J (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1: 489-495
Huang M, Chalfie M (1994) Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 367: 467-470
Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, Staroslawska E, Sosman J, McDermott D, Bodrogi I, Kovacevic Z, Lesovoy V, Schmidt-Wolf IG, Barbarash O, Gokmen E, O'Toole T, Lustgarten S, Moore L, Motzer RJ (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. The New England journal of medicine 356: 2271-2281
Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, Giaccia AJ, Abraham RT (2002) Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 22: 7004-7014
Kawasaki H, Altieri DC, Lu CD, Toyoda M, Tenjo T, Tanigawa N (1998) Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal cancer. Cancer research 58: 5071-5074
Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British journal of cancer 26: 239-257
Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110: 163-175
Kim HJ, Bae SC (2011) Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res 3: 166-179
Kim MJ, Kim DE, Jeong IG, Choi J, Jang S, Lee JH, Ro S, Hwang JJ, Kim CS (2012) HDAC inhibitors synergize antiproliferative effect of sorafenib in renal cell carcinoma cells. Anticancer research 32: 3161-3168
Kim YS, Jin HO, Seo SK, Woo SH, Choe TB, An S, Hong SI, Lee SJ, Lee KH, Park IC (2011) Sorafenib induces apoptotic cell death in human non-small cell lung cancer cells by down-regulating mammalian target of rapamycin (mTOR)-dependent survivin expression. Biochem Pharmacol 82: 216-226
Kita A, Nakahara T, Yamanaka K, Nakano K, Nakata M, Mori M, Kaneko N, Koutoku H, Izumisawa N, Sasamata M (2011) Antitumor effects of YM155, a novel survivin suppressant, against human aggressive non-Hodgkin lymphoma. Leukemia research 35: 787-792
Kondo K, Yao M, Kobayashi K, Ota S, Yoshida M, Kaneko S, Baba M, Sakai N, Kishida T, Kawakami S, Uemura H, Nagashima Y, Nakatani Y, Hosaka M (2001) PTEN/MMAC1/TEP1 mutations in human primary renal-cell carcinomas and renal carcinoma cell lines. International journal of cancer Journal international du cancer 91: 219-224
Kucejova B, Pena-Llopis S, Yamasaki T, Sivanand S, Tran TA, Alexander S, Wolff NC, Lotan Y, Xie XJ, Kabbani W, Kapur P, Brugarolas J (2011) Interplay between pVHL and mTORC1 pathways in clear-cell renal cell carcinoma. Mol Cancer Res 9: 1255-1265
Laster SM, Wood JG, Gooding LR (1988) Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J Immunol 141: 2629-2634
Lemasters JJ (1999) V. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am J Physiol 276: G1-6
Letai A (2005) BCL-2: found bound and drugged! Trends Mol Med 11: 442-444
Lim SY, Davidson SM, Mocanu MM, Yellon DM, Smith CC (2007) The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial permeability transition pore. Cardiovasc Drugs Ther 21: 467-469
Liu X, Van Vleet T, Schnellmann RG (2004) The role of calpain in oncotic cell death. Annu Rev Pharmacol Toxicol 44: 349-370
Lockshin RA, Williams CM (1964) Programmed cell death—II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. Journal of insect physiology 10: 643-649
Mahalingam D, Medina EC, Esquivel JA, 2nd, Espitia CM, Smith S, Oberheu K, Swords R, Kelly KR, Mita MM, Mita AC, Carew JS, Giles FJ, Nawrocki ST (2010) Vorinostat enhances the activity of temsirolimus in renal cell carcinoma through suppression of survivin levels. Clinical cancer research : an official journal of the American Association for Cancer Research 16: 141-153
Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146: 3-15
Mamane Y, Petroulakis E, Rong L, Yoshida K, Ler LW, Sonenberg N (2004) eIF4E--from translation to transformation. Oncogene 23: 3172-3179
Martin B, Edeline J, Patard JJ, Oger E, Jouan F, Boulanger G, Zerrouki S, Vigneau C, Rioux-Leclercq N (2012) Combination of Temsirolimus and tyrosine kinase inhibitors in renal carcinoma and endothelial cell lines. Journal of cancer research and clinical oncology 138: 907-916
Marusawa H, Matsuzawa S, Welsh K, Zou H, Armstrong R, Tamm I, Reed JC (2003) HBXIP functions as a cofactor of survivin in apoptosis suppression. The EMBO journal 22: 2729-2740
McDermott DF, Regan MM, Clark JI, Flaherty LE, Weiss GR, Logan TF, Kirkwood JM, Gordon MS, Sosman JA, Ernstoff MS, Tretter CP, Urba WJ, Smith JW, Margolin KA, Mier JW, Gollob JA, Dutcher JP, Atkins MB (2005) Randomized phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. J Clin Oncol 23: 133-141
Mita AC, Mita MM, Nawrocki ST, Giles FJ (2008) Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin Cancer Res 14: 5000-5005
Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, Grunwald V, Thompson JA, Figlin RA, Hollaender N, Urbanowitz G, Berg WJ, Kay A, Lebwohl D, Ravaud A (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372: 449-456
Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, Oudard S, Negrier S, Szczylik C, Kim ST, Chen I, Bycott PW, Baum CM, Figlin RA (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. The New England journal of medicine 356: 115-124
Motzer RJ, Murphy BA, Bacik J, Schwartz LH, Nanus DM, Mariani T, Loehrer P, Wilding G, Fairclough DL, Cella D, Mazumdar M (2000) Phase III trial of interferon alfa-2a with or without 13-cis-retinoic acid for patients with advanced renal cell carcinoma. J Clin Oncol 18: 2972-2980
Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403: 98-103
Nakahara T, Kita A, Yamanaka K, Mori M, Amino N, Takeuchi M, Tominaga F, Hatakeyama S, Kinoyama I, Matsuhisa A, Kudoh M, Sasamata M (2007) YM155, a novel small-molecule survivin suppressant, induces regression of established human hormone-refractory prostate tumor xenografts. Cancer research 67: 8014-8021
Nakahara T, Yamanaka K, Hatakeyama S, Kita A, Takeuchi M, Kinoyama I, Matsuhisa A, Nakano K, Shishido T, Koutoku H, Sasamata M (2011) YM155, a novel survivin suppressant, enhances taxane-induced apoptosis and tumor regression in a human Calu 6 lung cancer xenograft model. Anti-cancer drugs 22: 454-462
Nicotera P, Leist M, Manzo L (1999) Neuronal cell death: a demise with different shapes. Trends Pharmacol Sci 20: 46-51
Orrenius S, Zhivotovsky B (2006) The future of toxicology--does it matter how cells die? Chemical research in toxicology 19: 729-733
Pantuck AJ, Belldegrun AS, Figlin RA (2007) Cytoreductive nephrectomy for metastatic renal cell carcinoma: is it still imperative in the era of targeted therapy? Clin Cancer Res 13: 693s-696s
Parker AS, Kosari F, Lohse CM, Houston Thompson R, Kwon ED, Murphy L, Riehle DL, Blute ML, Leibovich BC, Vasmatzis G, Cheville JC (2006) High expression levels of survivin protein independently predict a poor outcome for patients who undergo surgery for clear cell renal cell carcinoma. Cancer 107: 37-45
Penninger JM, Kroemer G (2003) Mitochondria, AIF and caspases--rivaling for cell death execution. Nat Cell Biol 5: 97-99
Price DL, Sisodia SS, Borchelt DR (1998) Genetic neurodegenerative diseases: the human illness and transgenic models. Science 282: 1079-1083
Raffray M, Cohen GM (1997) Apoptosis and necrosis in toxicology: a continuum or distinct modes of cell death? Pharmacol Ther 75: 153-177
Ravagnan L, Roumier T, Kroemer G (2002) Mitochondria, the killer organelles and their weapons. J Cell Physiol 192: 131-137
Reed JC (2002) Apoptosis-based therapies. Nat Rev Drug Discov 1: 111-121
Robb VA, Karbowniczek M, Klein-Szanto AJ, Henske EP (2007) Activation of the mTOR signaling pathway in renal clear cell carcinoma. The Journal of urology 177: 346-352
Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14: 1296-1302
Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N (2000) Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med 191: 423-434
Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62: 10-29
Smith CC, Davidson SM, Lim SY, Simpkin JC, Hothersall JS, Yellon DM (2007) Necrostatin: a potentially novel cardioprotective agent? Cardiovasc Drugs Ther 21: 227-233
Sosman J, Puzanov I (2009) Combination targeted therapy in advanced renal cell carcinoma. Cancer 115: 2368-2375
Syntichaki P, Tavernarakis N (2002) Death by necrosis. Uncontrollable catastrophe, or is there order behind the chaos? EMBO Rep 3: 604-609
Thon L, Mathieu S, Kabelitz D, Adam D (2006) The murine TRAIL receptor signals caspase-independent cell death through ceramide. Exp Cell Res 312: 3808-3821
Thornberry NA (1998) Caspases: key mediators of apoptosis. Chem Biol 5: R97-103
Turner KJ, Moore JW, Jones A, Taylor CF, Cuthbert-Heavens D, Han C, Leek RD, Gatter KC, Maxwell PH, Ratcliffe PJ, Cranston D, Harris AL (2002) Expression of hypoxia-inducible factors in human renal cancer: relationship to angiogenesis and to the von Hippel-Lindau gene mutation. Cancer research 62: 2957-2961
Vaira V, Lee CW, Goel HL, Bosari S, Languino LR, Altieri DC (2007) Regulation of survivin expression by IGF-1/mTOR signaling. Oncogene 26: 2678-2684
Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nature reviews Molecular cell biology 11: 700-714
Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G, Declercq W, Grooten J, Fiers W, Vandenabeele P (1998a) Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. The Journal of experimental medicine 187: 1477-1485
Vercammen D, Brouckaert G, Denecker G, Van de Craen M, Declercq W, Fiers W, Vandenabeele P (1998b) Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. The Journal of experimental medicine 188: 919-930
Walker NI, Harmon BV, Gobe GC, Kerr JF (1988) Patterns of cell death. Methods Achiev Exp Pathol 13: 18-54
Weber T, Meinhardt M, Zastrow S, Wienke A, Fuessel S, Wirth MP (2013) Immunohistochemical analysis of prognostic protein markers for primary localized clear cell renal cell carcinoma. Cancer investigation 31: 51-59
Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M, Thompson CB, Korsmeyer SJ (2000) tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14: 2060-2071
Xu X, Chua CC, Kong J, Kostrzewa RM, Kumaraguru U, Hamdy RC, Chua BH (2007) Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cells. J Neurochem 103: 2004-2014
Yamanaka K, Nakahara T, Yamauchi T, Kita A, Takeuchi M, Kiyonaga F, Kaneko N, Sasamata M (2011) Antitumor activity of YM155, a selective small-molecule survivin suppressant, alone and in combination with docetaxel in human malignant melanoma models. Clin Cancer Res 17: 5423-5431
Yang PM, Chen HC, Tsai JS, Lin LY (2007) Cadmium induces Ca2+-dependent necrotic cell death through calpain-triggered mitochondrial depolarization and reactive oxygen species-mediated inhibition of nuclear factor-kappaB activity. Chem Res Toxicol 20: 406-415
Yap TA, Eisen TG (2006) Adjuvant therapy of renal cell carcinoma. Clinical genitourinary cancer 5: 120-130
Yazdanpanah B, Wiegmann K, Tchikov V, Krut O, Pongratz C, Schramm M, Kleinridders A, Wunderlich T, Kashkar H, Utermohlen O, Bruning JC, Schutze S, Kronke M (2009) Riboflavin kinase couples TNF receptor 1 to NADPH oxidase. Nature 460: 1159-1163
Yuen JS, Sim MY, Siml HG, Chong TW, Lau WK, Cheng CW, Huynh H (2011) Inhibition of angiogenic and non-angiogenic targets by sorafenib in renal cell carcinoma (RCC) in a RCC xenograft model. Br J Cancer 104: 941-947
Zamparese R, Pannone G, Santoro A, Lo Muzio L, Corsi F, Pedicillo MC, Scillitani EL, Tortorella S, Staibano S, Piscuoglio S, Lo Russo L, Bufo P (2008) Survivin expression in renal cell carcinoma. Cancer investigation 26: 929-935
Zhang Y, Chen ZD, Du CJ, Xu G, Luo W (2009) siRNA targeting survivin inhibits growth and induces apoptosis in human renal clear cell carcinoma 786-O cells. Pathology, research and practice 205: 823-827
Zong WX, Thompson CB (2006) Necrotic death as a cell fate. Genes Dev 20: 1-15
侯子珍 (2006) Survivin與腎癌微轉移及其PTEN的相關性研究. 蘭州大學