簡易檢索 / 詳目顯示

研究生: 黃致碩
Huang, Chih-Shou
論文名稱: 柵藻在生物反應器中對環境因子的反應:二氧化碳吸收和生長表現的變化
Impact of environmental factors on Scenedesmus abundans in a bioreactor: changes in carbon dioxide uptake and growth performance
指導教授: 楊雅棠
Yang, Ya-Tang
口試委員: 張晃猷
Chang, Hwan-You
黃介辰
Huang, Chieh-Chen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 45
中文關鍵詞: 生物反應器資料無線傳輸柵藻二氧化碳濃度偵測
外文關鍵詞: bioreactor, data transmission, Scenedesmus abundans, CO2 concentration detection
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球氣候變化是當前世界面臨的一個嚴峻挑戰,對人類的生存和發展帶來
    了巨大的威脅。而二氧化碳排放是引起氣候變化的主要因素之一,各國政府和科
    學家一直在尋找各種方法來解決這個問題。其中一種方法是透過自然生物進行
    吸收和轉換。柵藻是一種海洋微細藻類,可以通過光合作用吸收二氧化碳並釋放
    出氧氣,透過本實驗室的自製生物反應器,可以量測到柵藻吸收二氧化碳量,這
    個方法在應用上非常有用。柵藻的生長速度快,且具有高效的二氧化碳吸收能力,
    因此被視為減少溫室氣體排放的重要途徑之一。
    柵藻在受到四氯金酸水容液、硫酸銅水溶液和氯化鈷水溶液三種金屬離子
    影響時,受四氯金酸水容液影響最為明顯,其次是硫酸銅水溶液,而氯化鈷水溶
    液影響最小。四氯金酸水容液濃度為 0.01 mM 時,柵藻仍然存活並吸收共 8800
    ppm 的二氧化碳;硫酸銅水溶液濃度為 0.1 mM 時,柵藻仍然存活並吸收共 6300
    ppm 的二氧化碳;氯化鈷水溶液濃度為 0.1 mM 時,柵藻仍然存活並吸收共 7000
    ppm 的二氧化碳。
    在塑膠微粒的影響下,即使將塑膠微粒的濃度調整到預估的自然環境最大
    量,柵藻的二氧化碳吸收率、胡蘿蔔素、生物質量仍未有明顯差別。


    Global climate change is a severe challenge that the world is facing today, posing
    a significant threat to human survival and development. Carbon dioxide emissions are
    one of the primary factors causing climate change, and governments and scientists
    worldwide have been seeking various ways to address this issue. One such method is
    through natural biological absorption and conversion. Scenedesmus abundans is a type
    of marine microalgae that can absorb carbon dioxide and release oxygen through
    photosynthesis. Our laboratory has developed a homemade bioreactor to measure the
    amount of carbon dioxide absorbed by Scenedesmus abundans. This method has
    significant practical applications. Scenedesmus abundans has a fast growth rate and
    efficient carbon dioxide absorption capacity, making it an essential pathway for
    reducing greenhouse gas emissions.
    Scenedesmus abundans was influenced by three types of metal ions:
    tetrachloroauric acid solution, copper sulfate solution, and cobalt chloride solution.
    Tetrachloroauric acid solution had the greatest impact on Scenedesmus abundans,
    followed by copper sulfate solution, while cobalt chloride solution had the smallest
    impact. At a concentration of 0.01 mM, Scenedesmus abundans remained alive and
    absorbed a total of 8800 ppm of carbon dioxide under the influence of tetrachloroauric acid solution, and at a concentration of 0.1 mM, Scenedesmus abundans remained alive
    and absorbed a total of 6300 ppm of carbon dioxide under the influence of copper
    sulfate solution. At a concentration of 0.1 mM, Scenedesmus abundans remained alive
    and absorbed a total of 7000 ppm of carbon dioxide under the influence of cobalt
    chloride solution.
    Under the influence of plastic particles, even when the concentration of plastic
    particles was adjusted to the estimated maximum amount in the natural environment,
    there was no significant difference in Scenedesmus abundans 's carbon dioxide
    absorption rate, carotenoids, and biomass.

    致謝 II 中文摘要 IV Abstract V 目錄 VII 圖目錄 IX 表目錄 XI 一、 緒論 1 1-1研究動機 1 1-2文獻回顧 3 1-2-1柵藻行光合作用 3 1-2-2柵藻培養 [22] 5 二、實驗材料及方法 9 2-1 生物反應器裝置 9 2-1-1 硬體簡介 9 2-1-2 生物反應器電路簡介 10 2-1-3 SMD5050正白光防水燈條 11 2-2 柵藻 12 2-2-1 柵藻環境和環境氣體製造方式 12 2-2-2 柵藻濃度(O.D.682)量測 12 2-2-3 柵藻生物質量(Biomass)量測、色素量測 13 三、實驗步驟與結果 14 3-1實驗步驟 14 3-2實驗結果 16 3-2-1四氯金酸水容液實驗結果 16 3-2-2硫酸銅水溶液實驗結果 18 3-2-3氯化鈷水溶液實驗結果 19 3-2-4光強度實驗結果 20 3-2-5塑膠微粒實驗結果 22 四、結論及未來規劃 24 附錄 25 A-1 菠菜光合作用實驗數據 25 A-1 K2CO3 膠囊實驗數據 26 A-2 金屬離子濃度、色素、生物質量量測表格 27 A-3 Arduino UNO 程式碼 32 A-4 中英文對照表 40 參考文獻 41

    [1] J. Carnicer, A. Alegria, C. Gannakopoulos, F. D. Giuseppe, A. Karali, N. Koutsias, P. Lionello, M. Parrington, C. Vitolo,“Global warming is shifting the relationships between fire weather and realized fire induced CO2 emissions in Europe” , Scientifc Reports. 2022.
    [2] J. S. Sperry, M. D. Venturas, H. N. Todd, A. T. Trugman, W. R. L. Anderegg, Y. Wang, X. Tai, “The impact of rising CO2 and acclimation on the response of US forests to global warming”, 2019. 116: p.25734-p.25744.
    [3] S.K. Mandotra, P. Kumar, M.R. Suseela, S. Nayaka, P.W. Ramteke, “Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities”, Bioresource Technology .2016. 201: p.222-p.229.
    [4] M. Vigani, C. Parisi, E. Rodriguez-Cerezo , M. J. Barbosa, L. Sijtsma, M. Ploeg, C. Enzing, “Food and feed products from microalgae: Market opportunities and challenges for the EU” , Trends in Food Science & Technology. 2015. 42: p.81-p.92.
    [5] Arne Jensen, “Present and future needs for algae and algal products”, Developments in Hydrobiology, Kluwer Academic. 85: p.15-p.23.
    [6] M. L. Wells, P. Potin, J. S. Craigie, J. A. Raven, S. S. Merchant, K. E. Helliwell, A. G. Smith, M. E. Camire, S. H. Brawley, “Algae as nutritional and functional food sources: revisiting our understanding”, Journal of Applied Phycology. 2017. 29: p.949–p.982.
    [7] C. Dawczynski, U. Schäfer, M. Leiterer, G. Jahreis, “Nutritional and Toxicological Importance of Macro, Trace, and Ultra-Trace Elements in Algae Food Products”, Journal of Agricultural and Food Chemistry. 2007. 55: p.10470–p.10475.
    [8] Anni Alitalo, Marko Niskanen, Erkki Aura, “Biocatalytic methanation of hydrogen and carbon dioxide in a fixed bed bioreactor”, Bioresource Technology. 2015. 196: p.600-p.605.
    [9] I. Akkerman, M. Janssen, J. Rocha, R. H. Wijffels, “Photobiological hydrogen production: photochemical efficiency and bioreactor design”, International Journal of Hydrogen Energy. 2002. 27: p.1195-p.1208.
    [10] A. Durand, “Bioreactor designs for solid state fermentation”, Biochemical Engineering Journal. 2003. 13: p.113-p.125.
    [11] M. V. A. Corpuz, L. Borea, V. Senatore, F. Castrogiovanni, F. Castrogiovanni, G. Oliva, F. Ballesteros Jr, T. Zarra, V. Belgiorno, K. H. Choo, S. W. Hasan, V. Naddeo, “Wastewater treatment and fouling control in an electro algae-activated sludge membrane bioreactor”, Science of The Total Environment. 2021. 786: p.147475.
    [12] S. J. Pirt, Y. K. Lee, M. R. Walach, M. W. Pirt, H. H. M. Balyuzi, M. J. Bazin, “A tubular bioreactor for photosynthetic production of biomass from carbon dioxide: Design and performance”, Journal of Chemical Technology & Biotechnology.1983. 33: p.35-p.58.
    [13] Y. R. Cheng, H. Y. Wang, “Highly effective removal of microplastics by microalgae Scenedesmus abundans”, Chemical Engineering Journal. 2022. 435: p.135079.
    [14] K.D. Sung, J.S. Lee, C.S. Shin, S.C. Park, “Isolation of a new highly CO2 tolerant fresh water Microalga Chlorella sp. KR-1”, Renewable Energy, 1999. 16: p.1019-p.1022.
    [15] S.K. Mandotra, P. Kumar, M.R. Suseela, P.W. Ramteke, “Fresh water green microalga Scenedesmus abundans: A potential feedstock for high quality biodiesel production”, Bioresource Technology. 2014. 156: p.42-p.47.
    [16] G. H. Krause, E. Weis, “Chlorophyll fluorescence and photosynthesis: The Basics”,1991. 42: p.313-p.349.
    [17] B. Lekshmi, R.S. Joseph, A. Jose, S. Abinandan, S. Shanthakumar, “Studies on reduction of inorganic pollutants from wastewater by Chlorella pyrenoidosa and Scenedesmus abundans”, Alexandria Engineering Journal. 2015. 54: p.1291-p.1296.
    [18] E. Abazarian, R. Gheshlaghi, M. A. Mahdavi, “Impact of light/dark cycle on electrical and electrochemical characteristics of algal cathode sediment microbial fuel cells”, Journal of Power Sources. 2020. 475: p.228686.
    [19] G. Siedlewicz, A. Żak, L. Sharma, A. Kosakowska, K. Pazdro, “Effects of oxytetracycline on growth and chlorophyll a fluorescence in green algae (Chlorella vulgaris), diatom (Phaeodactylum tricornutum) and cyanobacteria (Microcystis aeruginosa and Nodularia spumigena)”, 2020. 62: p.241-p.225.
    [20] A. K. Patel, F. P. J. B. Albarico, P. K. Perumal, A. P. Vadrale, C. T. Nian, H. T. B. Chau, C. Anwar, H. M. u. d. Wani, A. Pal, R. Saini, L. H. Ha, B. Senthilkumar, Y. S. Tsang, C. W. Chen, C. D. Dong, R. R. Singhania, “Algae as an emerging source of bioactive pigments”, Bioresource Technology. 2002. 351: p.126910.
    [21] B. B. Buchanan , W. Gruissem, R.L. Jones , “Biochemistry and Molecular Biology of Plants, 2nd Edition ”, Wiley, 2015.
    [22] 程毓茹 ,<利用臺灣原生藻種高效移除水體中多種高濃度塑膠微粒> ,國立清華大學工程與系統科學系碩士論文,2022。
    [23] D. S. Lin , C. H. Lee, Y. T. Yang, “Wireless bioreactor for anaerobic cultivation of bacteria”, Biotechnology Progress. 2020. 36: p.3009.
    [24] J. Craven, M. A. Sultan, R. Sarma, S. Wilson, N. Meeks, D. Y. Kim, J. T. Hastings, D. Bhattacharyya,“Rhodopseudomonas palustris-based conversion of organic acids to hydrogen using plasmonic nanoparticles and near-infrared light”, Royal Society of Chemistry. 2019. 9: p.41218-p.41227.
    [25] Y. K. Oh, E. H. Seol, E. Y. Lee, S. Park,“Fermentative hydrogen production by a new chemoheterotrophic bacterium Rhodopseudomonas Palustris P4”, International Journal of Hydrogen Energy. 2002. 27: p.1373-p.1379.

    QR CODE