研究生: |
黃致碩 Huang, Chih-Shou |
---|---|
論文名稱: |
柵藻在生物反應器中對環境因子的反應:二氧化碳吸收和生長表現的變化 Impact of environmental factors on Scenedesmus abundans in a bioreactor: changes in carbon dioxide uptake and growth performance |
指導教授: |
楊雅棠
Yang, Ya-Tang |
口試委員: |
張晃猷
Chang, Hwan-You 黃介辰 Huang, Chieh-Chen |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 45 |
中文關鍵詞: | 生物反應器 、資料無線傳輸 、柵藻 、二氧化碳濃度偵測 |
外文關鍵詞: | bioreactor, data transmission, Scenedesmus abundans, CO2 concentration detection |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全球氣候變化是當前世界面臨的一個嚴峻挑戰,對人類的生存和發展帶來
了巨大的威脅。而二氧化碳排放是引起氣候變化的主要因素之一,各國政府和科
學家一直在尋找各種方法來解決這個問題。其中一種方法是透過自然生物進行
吸收和轉換。柵藻是一種海洋微細藻類,可以通過光合作用吸收二氧化碳並釋放
出氧氣,透過本實驗室的自製生物反應器,可以量測到柵藻吸收二氧化碳量,這
個方法在應用上非常有用。柵藻的生長速度快,且具有高效的二氧化碳吸收能力,
因此被視為減少溫室氣體排放的重要途徑之一。
柵藻在受到四氯金酸水容液、硫酸銅水溶液和氯化鈷水溶液三種金屬離子
影響時,受四氯金酸水容液影響最為明顯,其次是硫酸銅水溶液,而氯化鈷水溶
液影響最小。四氯金酸水容液濃度為 0.01 mM 時,柵藻仍然存活並吸收共 8800
ppm 的二氧化碳;硫酸銅水溶液濃度為 0.1 mM 時,柵藻仍然存活並吸收共 6300
ppm 的二氧化碳;氯化鈷水溶液濃度為 0.1 mM 時,柵藻仍然存活並吸收共 7000
ppm 的二氧化碳。
在塑膠微粒的影響下,即使將塑膠微粒的濃度調整到預估的自然環境最大
量,柵藻的二氧化碳吸收率、胡蘿蔔素、生物質量仍未有明顯差別。
Global climate change is a severe challenge that the world is facing today, posing
a significant threat to human survival and development. Carbon dioxide emissions are
one of the primary factors causing climate change, and governments and scientists
worldwide have been seeking various ways to address this issue. One such method is
through natural biological absorption and conversion. Scenedesmus abundans is a type
of marine microalgae that can absorb carbon dioxide and release oxygen through
photosynthesis. Our laboratory has developed a homemade bioreactor to measure the
amount of carbon dioxide absorbed by Scenedesmus abundans. This method has
significant practical applications. Scenedesmus abundans has a fast growth rate and
efficient carbon dioxide absorption capacity, making it an essential pathway for
reducing greenhouse gas emissions.
Scenedesmus abundans was influenced by three types of metal ions:
tetrachloroauric acid solution, copper sulfate solution, and cobalt chloride solution.
Tetrachloroauric acid solution had the greatest impact on Scenedesmus abundans,
followed by copper sulfate solution, while cobalt chloride solution had the smallest
impact. At a concentration of 0.01 mM, Scenedesmus abundans remained alive and
absorbed a total of 8800 ppm of carbon dioxide under the influence of tetrachloroauric acid solution, and at a concentration of 0.1 mM, Scenedesmus abundans remained alive
and absorbed a total of 6300 ppm of carbon dioxide under the influence of copper
sulfate solution. At a concentration of 0.1 mM, Scenedesmus abundans remained alive
and absorbed a total of 7000 ppm of carbon dioxide under the influence of cobalt
chloride solution.
Under the influence of plastic particles, even when the concentration of plastic
particles was adjusted to the estimated maximum amount in the natural environment,
there was no significant difference in Scenedesmus abundans 's carbon dioxide
absorption rate, carotenoids, and biomass.
[1] J. Carnicer, A. Alegria, C. Gannakopoulos, F. D. Giuseppe, A. Karali, N. Koutsias, P. Lionello, M. Parrington, C. Vitolo,“Global warming is shifting the relationships between fire weather and realized fire induced CO2 emissions in Europe” , Scientifc Reports. 2022.
[2] J. S. Sperry, M. D. Venturas, H. N. Todd, A. T. Trugman, W. R. L. Anderegg, Y. Wang, X. Tai, “The impact of rising CO2 and acclimation on the response of US forests to global warming”, 2019. 116: p.25734-p.25744.
[3] S.K. Mandotra, P. Kumar, M.R. Suseela, S. Nayaka, P.W. Ramteke, “Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities”, Bioresource Technology .2016. 201: p.222-p.229.
[4] M. Vigani, C. Parisi, E. Rodriguez-Cerezo , M. J. Barbosa, L. Sijtsma, M. Ploeg, C. Enzing, “Food and feed products from microalgae: Market opportunities and challenges for the EU” , Trends in Food Science & Technology. 2015. 42: p.81-p.92.
[5] Arne Jensen, “Present and future needs for algae and algal products”, Developments in Hydrobiology, Kluwer Academic. 85: p.15-p.23.
[6] M. L. Wells, P. Potin, J. S. Craigie, J. A. Raven, S. S. Merchant, K. E. Helliwell, A. G. Smith, M. E. Camire, S. H. Brawley, “Algae as nutritional and functional food sources: revisiting our understanding”, Journal of Applied Phycology. 2017. 29: p.949–p.982.
[7] C. Dawczynski, U. Schäfer, M. Leiterer, G. Jahreis, “Nutritional and Toxicological Importance of Macro, Trace, and Ultra-Trace Elements in Algae Food Products”, Journal of Agricultural and Food Chemistry. 2007. 55: p.10470–p.10475.
[8] Anni Alitalo, Marko Niskanen, Erkki Aura, “Biocatalytic methanation of hydrogen and carbon dioxide in a fixed bed bioreactor”, Bioresource Technology. 2015. 196: p.600-p.605.
[9] I. Akkerman, M. Janssen, J. Rocha, R. H. Wijffels, “Photobiological hydrogen production: photochemical efficiency and bioreactor design”, International Journal of Hydrogen Energy. 2002. 27: p.1195-p.1208.
[10] A. Durand, “Bioreactor designs for solid state fermentation”, Biochemical Engineering Journal. 2003. 13: p.113-p.125.
[11] M. V. A. Corpuz, L. Borea, V. Senatore, F. Castrogiovanni, F. Castrogiovanni, G. Oliva, F. Ballesteros Jr, T. Zarra, V. Belgiorno, K. H. Choo, S. W. Hasan, V. Naddeo, “Wastewater treatment and fouling control in an electro algae-activated sludge membrane bioreactor”, Science of The Total Environment. 2021. 786: p.147475.
[12] S. J. Pirt, Y. K. Lee, M. R. Walach, M. W. Pirt, H. H. M. Balyuzi, M. J. Bazin, “A tubular bioreactor for photosynthetic production of biomass from carbon dioxide: Design and performance”, Journal of Chemical Technology & Biotechnology.1983. 33: p.35-p.58.
[13] Y. R. Cheng, H. Y. Wang, “Highly effective removal of microplastics by microalgae Scenedesmus abundans”, Chemical Engineering Journal. 2022. 435: p.135079.
[14] K.D. Sung, J.S. Lee, C.S. Shin, S.C. Park, “Isolation of a new highly CO2 tolerant fresh water Microalga Chlorella sp. KR-1”, Renewable Energy, 1999. 16: p.1019-p.1022.
[15] S.K. Mandotra, P. Kumar, M.R. Suseela, P.W. Ramteke, “Fresh water green microalga Scenedesmus abundans: A potential feedstock for high quality biodiesel production”, Bioresource Technology. 2014. 156: p.42-p.47.
[16] G. H. Krause, E. Weis, “Chlorophyll fluorescence and photosynthesis: The Basics”,1991. 42: p.313-p.349.
[17] B. Lekshmi, R.S. Joseph, A. Jose, S. Abinandan, S. Shanthakumar, “Studies on reduction of inorganic pollutants from wastewater by Chlorella pyrenoidosa and Scenedesmus abundans”, Alexandria Engineering Journal. 2015. 54: p.1291-p.1296.
[18] E. Abazarian, R. Gheshlaghi, M. A. Mahdavi, “Impact of light/dark cycle on electrical and electrochemical characteristics of algal cathode sediment microbial fuel cells”, Journal of Power Sources. 2020. 475: p.228686.
[19] G. Siedlewicz, A. Żak, L. Sharma, A. Kosakowska, K. Pazdro, “Effects of oxytetracycline on growth and chlorophyll a fluorescence in green algae (Chlorella vulgaris), diatom (Phaeodactylum tricornutum) and cyanobacteria (Microcystis aeruginosa and Nodularia spumigena)”, 2020. 62: p.241-p.225.
[20] A. K. Patel, F. P. J. B. Albarico, P. K. Perumal, A. P. Vadrale, C. T. Nian, H. T. B. Chau, C. Anwar, H. M. u. d. Wani, A. Pal, R. Saini, L. H. Ha, B. Senthilkumar, Y. S. Tsang, C. W. Chen, C. D. Dong, R. R. Singhania, “Algae as an emerging source of bioactive pigments”, Bioresource Technology. 2002. 351: p.126910.
[21] B. B. Buchanan , W. Gruissem, R.L. Jones , “Biochemistry and Molecular Biology of Plants, 2nd Edition ”, Wiley, 2015.
[22] 程毓茹 ,<利用臺灣原生藻種高效移除水體中多種高濃度塑膠微粒> ,國立清華大學工程與系統科學系碩士論文,2022。
[23] D. S. Lin , C. H. Lee, Y. T. Yang, “Wireless bioreactor for anaerobic cultivation of bacteria”, Biotechnology Progress. 2020. 36: p.3009.
[24] J. Craven, M. A. Sultan, R. Sarma, S. Wilson, N. Meeks, D. Y. Kim, J. T. Hastings, D. Bhattacharyya,“Rhodopseudomonas palustris-based conversion of organic acids to hydrogen using plasmonic nanoparticles and near-infrared light”, Royal Society of Chemistry. 2019. 9: p.41218-p.41227.
[25] Y. K. Oh, E. H. Seol, E. Y. Lee, S. Park,“Fermentative hydrogen production by a new chemoheterotrophic bacterium Rhodopseudomonas Palustris P4”, International Journal of Hydrogen Energy. 2002. 27: p.1373-p.1379.