研究生: |
林政宇 Lin, Cheng-Yu |
---|---|
論文名稱: |
銻化鎵表面鈍化處理之特性分析與研究 Study and Analysis of Passivation on GaSb Surface |
指導教授: |
李明昌
Lee, Ming-Chang |
口試委員: |
王立康
Wang, Li-Karn 吳孟奇 Wu, Meng-Chyi |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 銻化鎵 、快速熱熔磊晶法 、鈍化 、液相磊晶 、電子槍蒸鍍 、三五族 |
外文關鍵詞: | GaSb, RMG, Passivation, LPE, E-gun, Rapid-Melt-Growth |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了實現邏輯元件與光通訊系統整合,在短距離中進行光訊號的傳輸,使數據傳輸速度與資訊量更大,矽光子領域在這之中扮演了重要的角色,然而關鍵材料矽卻不適合做為光源。因此,本文將致力於將銻化鎵整合於矽基板上,透過快速熱熔磊晶法(RMG)將非晶的銻化鎵轉變為單晶,並使用不同的鈍化方法來進一步提升磊晶品質。
但將三五族材料整合於矽基板上的異質整合也有著許多挑戰,像是會產生反相位介面、晶格常數不匹配、材料間熱膨脹係數差異過大等問題。因此,需要優化溫度、材料比例等參數,以及透過鈍化方法處理銻化鎵表面,使快速熱熔磊晶的過程更順利。
量測部份,運用光致發光系統(PL)、穿透式顯微鏡、EDS、SAD、Raman、AFM觀察發光效率,分析材料比例與鍵結,判別晶向以及觀察粗糙度。最後發現在鎵含量65%的銻化鎵會有較好的發光效率。快速熱熔磊晶的過程中,超過熔點的時間要短,溫度要接近熔點。透過將純銻層覆蓋於原本的銻化鎵上能夠減少鎵與矽的擴散,使快速熱熔磊晶的過程能更順利地複製晶向,減少被雜質干擾。
In order to integrate logic device with optical communication systems, the transmission of optical signals in a short distance makes the data transmission speed and information larger. Silicon photonics plays an important role in this thing, but Silicon is still not appropriate to be light source. Therefore, this paper will focus on the integration of Gallium Antimonide (GaSb) on the Silicon substrate, recrystallizing the amorphous Gallium Antimonide into single crystal by Rapid-Melt-Growth (RMG), and use different passivation methods to further enhance the epitaxial quality.
But there are many challenge for the heterogeneous integration of the III-V materials integrated into Silicon substrate. Such as anti-phase boundary, lattice misfit (13%), thermal expansion coefficient difference between the materials is too large and so on. Accordingly, the parameters of the temperature and the material ratio needs to be optimized, and passivate GaSb surface for doing RMG better.
In measurement section, using Photoluminescence system (PL), Transmission Electron Microscopy (TEM), EDS, SAD, Raman, AFM to observe the emitting efficiency, analyze material ratios , bonding, crystal orientation and the roughness. Finally, it shows that Ga with 65% would have better emitting efficiency. By covering the pure Sb layer on the original GaSb surface, the diffusion of Ga and Si can be reduced. Replicate the crystal orientation better when doing RMG, and reduce the interference of impurities.
[1]. Joseph C. Palais, Fiber Optic Communications. Pearson, 2005.
[2]. K. Yamada, et al., Silicon photonics based on photonic wire waveguides, 2009 14th OptoElectronics and Communications Conference, Vienna, 2009. pp. 1-2.
[3]. Donald Neamen, Semiconductor Physics And Devices, McGraw-Hill Science Engineering, 2011.
[4]. Max.M-K, Liu., Principles and Applications of Optical Communications. IRWIN, Chicago, 1996.
[5]. Adachi, S., Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs, and In1-xGaxAsyP1-y. Journal of Applied Physics, 1989. 66(12): p. 6030-6040.
[6]. Zhou, W., et al., High Hole Mobility of GaSb Relaxed Epilayer Grown on GaAs Substrate by MOCVD through Interfacial Misfit Dislocations Array. Journal of Materials Science & Technology, 2012. 28(2): p. 132-136.
[7]. Rogalski, A., Infrared detectors: status and trends. Progress in Quantum Electronics, 2003. 27(2–3): p. 59-210.
[8]. A, H.W., Electronic Structure and Properties of Solids. (Freeman), 1980.
[9]. E. Papis-Polakowska, Surface treatments of GaSb and related materials for the processing of mid-infrared semiconductor devices, Electron Technol. Internet J, 2006. 37/38: p. 1–34
[10]. T.L Ngai, R.C.S. and Y.A. Chang, The Ga-Sb (Gallium-Antimony) System. Bulletin of Alloy Phase Diagrams, 1988. 9: p. 586-591.
[11]. M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters. (World Scientific), 1996. 1: p. 125-146.
[12]. H. Arend and J. Hulliger, Crystal Growth in Science Technology. Plenum, 1987. vol. 210: p. 193.
[13]. Bahri M., et al., Structural characterization of GaSb-based heterostructures grown on Si. ANR, 2012.
[14]. Sze, S.M., Physics of Semiconductor Devices. Wiley, 1981.
[15]. S. Wolf and R. Tauber, Silicon Processing for the VLSI Era. Lattice Press, 1986.
[16]. Ze Yuan, et al., Optimal Device Architecture and Hetero-Integration Scheme for III-V CMOS. VLSI, 2013: p. T54-T55.
[17]. Kujala, J., et al., Native point defects in GaSb. Journal of Applied Physics, 2014. 116(14): p. 143508.
[18]. Lee, J.L., et al., Impurity effect on the creation of Ga vacancies in a Si‐doped layer grown on Be‐doped GaAs by molecular‐beam epitaxy. Journal of Applied Physics, 1990. 68(11): p. 5571-5575.
[19]. K. Akahane, N. Yamamoto, S.-i. Gozu, and N. Ohtani, Heteroepitaxial growth of GaSb on Si(001) substrates. Journal of Crystal Growth, 2004. vol. 264: pp. 21-25
[20]. B. W. Jia, K. H. Tan, W. K. Loke, S. Wicaksono and S. F. Yoon, Hetero-integration of GaSb channel on silicon with ultra-thin buffer utilizing interfacial misfit dislocations. 2016 IEEE Silicon Nanoelectronics Workshop (SNW), Honolulu, HI, 2016. pp. 158-159.
[21]. Qiang Li, Billy Lai, and Kei May Lau, Epitaxial growth of GaSb on V-grooved Si (001) substrates with an ultrathin GaAs stress relaxing layer. Applied Physics Letters, 2017. vol. 111: p. 172013.
[22]. Shu-Lu Chen, Peter B. Griffin, and J. D. Plummer, Single-Crystal GaAs and GaSb on Insulator on Bulk Si Substrates Based on Rapid Melt Growth. IEEE, 2010. vol. 31: pp. 597-599.
[23]. Mohammedy, Farseem M., and Jamal Deen, M., Growth and fabrication issues of GaSb-based detectors. Journal of Materials Science: Materials in Electronics, 2009. vol. 20: pp. 1039-1058.
[24]. Y. Dong, X. M. Ding, and X. Y. HouY. Li and X. B. Li, Sulfur passivation of GaAs metal-semiconductor field-effect transistor. Applied Physics Letters, 2000. vol. 77: pp. 3839-3841.
,[25]. Liu, Y., M.D. Deal, and J.D. Plummer, High-quality single-crystal Ge on insulator by liquid-phase epitaxy on Si substrates. Applied Physics Letters, 2004. 84(14): p. 2563-2565.
[26]. Chen, S., Design and process for three-dimensional heterogeneous integration, J.L. Plummer, P.B. Griffin, and Y. Nishi, Editors. 2010. p. 57-61.
[27]. Davies R H, et al., MTDATA - Thermodynamics and Phase Equilibrium Software from the National Physical Laboratory. UK, 2002: p. 229-271.
[28]. J. R. Reboul, L. Cerutti, J. B. Rodriguez, P. Grech, and E. Tournié, Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si. Applied Physics Letters, 2011. vol. 99: p. 121113.
[29]. S. Hosseini Vajargah, S. Y. Woo, S. Ghanad-Tavakoli, R. N. Kleiman, J. S. Preston, and G. A. Botton, Atomic-resolution study of polarity reversal in GaSb grown on Si by scanning transmission electron microscopy. Journal of Applied Physics,2012. vol. 112: p. 093101.
[30]. Y. R. Chen, L. C. Chou, Y. J. Yang, and H. H. Lin, Twinning in GaAsSb grown on (1 1 1)B GaAs by molecular beam epitaxy. Journal of Physics D: Applied Physics, 2013. vol. 46: p. 035306.
[31]. Osamu Morohara, et al., Sb irradiation effect on growth of GaAs thin film on Si (111) substrate. Journal of Crystal Growth, 2013. vol. 378: pp.113-116.
[32]. Dongwan Seo, Jihoon Na, Seunghyo Lee, and Sangwoo Lim, Behavior of a GaSb (100) Surface in the Presence of H2O2 in Wet-Etching Solutions. The Journal of Physical Chemistry C, 2015. vol. 119: pp. 24774-24780.
[33]. Lee, J.L., et al., Impurity effect on the creation of Ga vacancies in a Si‐doped layer grown on Be‐doped GaAs by molecular‐beam epitaxy. Journal of Applied Physics, 1990. 68(11): p. 5571-5575.