簡易檢索 / 詳目顯示

研究生: 洪瑞慶
Hong, Ray-Ching
論文名稱: 控制光折變晶體中的調變不穩定性
Control of Modulation Instability in Photorefractive Crystals
指導教授: 李瑞光
Lee, Ray-Kuang
口試委員: 鄭建宗
張仁煦
曲宏宇
李政誼
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 35
中文關鍵詞: 非線性光學光折變晶體調變不穩定性
外文關鍵詞: Nonlinear optics, Photorefractive crystal, Modulation instability
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文介紹二個主要的研究成果。第一個研究是經由實驗測量與理論分析的方式,我們證明了利用同調光的背景光與訊號光的強度比例可以在光折變晶體中控制調變不穩定性 (modulation instability, MI)。當入射同調光的強度增加時,產生一系列自發性的光學圖案。在實驗觀察中顯示了影像條紋的出現、抑制,以及消失。控制不同偏壓與不同光強度比例的實驗中,利用半導體能帶傳輸模型 (band transport model)的理論來與實驗數據做分析,將兩者結合而得到良好的驗證。第二個研究是要在非線性系統中研究共振現象。我們同樣使用實驗測量與理論分析,在光折變晶體的非瞬時非線性系統中,發現在調變不穩定性中可以發生共振現象。經由自發性光學圖案的轉換過程,以外加偏壓給予時間上的週期性調變(可對應為非線性強度的調變)。當調變頻率接近於共振頻率時,能夠大幅提升MI圖案的對比度。我們利用非瞬時非線性薛丁格方程式(nonlinear Schrödinger equation)的理論與實驗數據的分析進行比對,所得到的結果可作為共振現象良好的驗證。


    This dissertation presents the study on modulation instability in the photorefractive crystal. We control spontaneous optical patterns with different bias voltages and different optical intensities in the nonlinear media. In first work, we study modulation instability by the intensity ratio of background to signal beams. A series of spontaneous optical pattern formations are observed in the photorefractive crystal, processing from appearance, suppression, and disappearance by experimental measurements. Theoretical analyses are based on the band transport model which would give good agreement to experimental data. In second work, we study resonance in the non-instantaneous system. Resonance is performed with a temporally periodic modulation in the external bias voltage. The resonant frequency generates an enhancement in the visibility of MI. Theoretical model obtained from a nonlinear non-instantaneous Schrödinger equation gives good agreements to experimental data.

    誌謝 i Abstract ii 摘要 iii Contents iv List of Figures v 1. Introduction 1 1.1 Photorefractive Crystals 1 1.2 Photorefractive Effect 1 1.3 Band Transport Model 3 1.4 Modulation Instability 5 2. Control by the Intensity Ratio 9 2.1 Motivation 9 2.2 Setup and Process of Experiment 9 2.3 Model and Theoretical Analyses 11 2.4 Analysis of Results 13 2.5 Conclusion 16 3. Control by Modulating Bias Voltages 17 3.1 Motivation 17 3.2 Setup and Process of Experiment 18 3.3 Analysis of Results 18 3.4 Model and Theoretical Analyses 24 3.6 Conclusion 29 4. Summary 31 Reference 33

    [1] T. Shinbrot and F. J. Muzzio, Nature 410, 251 (2001).
    [2] T. B. Benjamin and J. E. Feir, J. Fluid Mech. 27, 417 (1967).
    [3] V. I. Karpman, J. Exper. Theor. Phys. Lett. 6, 277 (1967).
    [4] A. Hasegawa, Plasma Instabilities and Nonlinear Effects, (Springer-Verlag 1975).
    [5] G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
    [6] L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon Press, 1996).
    [7] Y. Lian, S. X. Dou, H. Gao, Y. Zhu, X. Wu, C. Yang, and P. Ye, Opt. Lett. 19, 610-612 (1994).
    [8] S. X. Dou, H. Gao, J. Zhang, Y. Lian, H. Wang, Y. Zhu, X. Wu, C. Yang, and P. Ye, J. Opt. Soc. Am. B 12, 1048-1055 (1995).
    [9] S. X. Dou, Y. Lian, H. Gao, Y. Zhu, X. Wu, C. Yang, and P. Ye, Appl. Opt. 34, 2024-2032 (1995).
    [10] A. M. Glass, A. M. Johnson, D. H. Olson, W. Simpson, and A. A. Ballman, Appl. Phys. Lett. 44, 948 (1984).
    [11] G. C. Valley, A. L. Smirl, M. B. Klein, K. Bohnert, and T. F. Boggess, Opt. Lett. 11, 647-649 (1986).
    [12] W. E. Moerner, and S. M. Silence, Chem. Rev. 94, 127–155 (1994).
    [13] E. Jermann, J. Otten, J. Opt. Soc. Am. B 10 , 2085 (1993).
    [14] A. Motes and J. J. Kim, J. Opt. Soc. Am. B 4 , 1379 (1987).
    [15] D. Kip, M. Soljačić, M. Segev, E. Eugenieva, and D.N. Christodoulides, Science, 290:495 (2000).
    [16] D. Kip, M. Soljačić, M. Segev, S. M. Sears, and D. N. Christodoulides, J. Opt. Soc. Am. B, 19:502 (2002).
    [17] Z. Chen, J. Klinger, and D.N. Christodoulides, Phys. Rev. E, 66:066601 (2002).
    [18] P. Günter, F. Micheron, Ferroelectrics 18 , 27 (1978).
    [19] G. Montemezzani, M. Ingold, H. Looser, P. Günter, Ferroelectrics 92 , 281 (1989).
    [20] Kuroda, K. (Ed.). Progress in Photorefractive Nonlinear Optics. (London: CRC Press. 2002).
    [21] T.J. Hall, R. Jaura, L.M. Connors, P.D. Foote, Prog. Quantum Electron. 10, 77-146 (1985).
    [22] P. Günter and J.-P. Huignard, eds., Photorefractive Materials and Their Applications, I, Vol. 61 of Topics in Applied Physics, (Springer-Verlag, Berlin 1988).
    [23] L. Solymar, D.J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials, (Clarendon Press, Oxford 1996).
    [24] K. Buse, Appl. Phys. B 64 , 391 (1997).
    [25] S. Stepanov, Rep. Prog. Phys. 57 , 396 (1994).
    [26] Pochi Yeh. Introduction to photorefractive nonlinear optics. (Wiley series in pure and applied optics 1993).
    [27] M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, Phys. Rev. Lett. 73, 3211–3214 (1994).
    [28] D. N. Christodoulides and M. I. Carvalho, J. Opt. Soc. Am. B 12, 1628–1633 (1995).
    [29] M. Segev, M. Shih, and G. C. Valley, J. Opt. Soc. Am. B 13, 706–718 (1996).
    [30] V. I. Bespalov and V. I. Talanov, JETP Lett. 3 , 307 (1966).
    [31] N. V. Kuktharev, V. B. Markov, S. G. Odulov, M. S. Soskin, and L. Vinetskii, Ferroelectrics 22 , 949 (1979).
    [32] D. N. Christodoulides and M. I. Carvalho, J. Opt. Soc. Am. B 12 , 1628 (1995).
    [33] C. Denz, M. Schwab, and C. Weilnau, Transverse-Pattern Formation in Photorefractive Optics (Springer-Verlag, 2003).
    [34] G. P. Agrawal, Phys. Rev. Lett. 59, 880 (1987).
    [35] C.-C. Jeng, Y. Su, R.-C. Hong, and R.-K. Lee, Opt. Express23, 10266-10271 (2015).
    [36] Podlozhenov, S., Graetsch, H. A., Schneider, J., Ulex, M., Wohlecke, M. & Betzler, K. Acta Cryst. B62, 960-965 (2006).
    [37] D. Kip, M. Soljačić, M. Segev, S. M. Sears, and D. N. Christodoulides, J. Opt. Soc. Am. B 19, 502-512 (2002).
    [38] C.-C. Jeng, Y.-Y. Lin, R.-C. Hong, and R.-K. Lee, Phys. Rev. Lett. 102, 153905(2009).
    [39] M.-F. Shih, C.-C. Jeng, F.-W. Sheu, and C.-Y. Lin, Phys. Rev. Lett. 88 , 133902 (2002).
    [40] C.-C. Jeng, M.-F. Shih, K. Motzek, and Y. S. Kivshar, Phys. Rev. Lett. 92 , 043904 (2004).
    [41] N.V. Kuktharev, V.B. Markov, S.G. Odulov, M.S. Soskin and L. Vinetskii, Ferroelectrics 22, 949 (1979).
    [42] Z. Jovanoski and R. A. Sammut, Phys. Rev. E 50, 4087 (1994).
    [43] H. Buljan, A. Šiber, M. Soljačić, and M. Segev, Phys. Rev. E 66, 035601 (2002).
    [44] D. Kip, M. Soljačić, M. Segev, E. Eugenieva, D. N. Christodoulides, Science 290, 495–498 (2000).
    [45] D. N. Christodoulides and M. I. Carvalho, J. Opt. Soc. Am. B 12, 9 (1995).
    [46] C. Denz, M. Schwab, and C. Weilnau, Transverse-Pattern Formation in Photorefractive Optics, (Springer-Verlag, 2003).
    [47] R.-C. Hong, C.-Y. Lin, Y.-L. Chuang, C.-M. Wu, Y. Su, J.-Y. Lee, C.-C. Jeng, M.-F. Shih, and R.-K. Lee, Opt. Lett. 43, 3329-3332 (2018).
    [48] A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, Appl. Phys. Lett. 64 , 3068 (1994).
    [49] A. A. Zozulya and D. Z. Anderson, Opt. Lett. 20 , 837 (1995).

    QR CODE