簡易檢索 / 詳目顯示

研究生: 林弘
Lin, Hung
論文名稱: 模糊軸式三維指派問題的建構與演算法
Model Formulation and Algorithms for a Fuzzy Axial Three-Dimensional Assignment Problem
指導教授: 溫于平
Wen, Ue-Pyng
林吉仁
Lin, Chi-Jen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 44
中文關鍵詞: 模糊指派問題軸式三維指派問題分支界限法f-g折衷值法
外文關鍵詞: Fuzzy assignment problem, Axial three-dimensional assignment problem, B&B algorithm, f-g tradeoff algorithm
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 軸式三維指派問題在作業研究領域的應用上是一種非常普遍的問題。在確定性的情況之下,到目前為止已經有很多效率很好的演算法。近年來,很多學者開始研究在不確定的情況之下的指派問題。本論文建構一個模糊軸式三維指派模型並提出兩種演算法來求解。在模型中,指派成本是屬於在模糊區間中的線性遞增函數。此外,管理者也對總成本設定範圍作為它的模糊目標並且定義總成本是屬於在模糊區間中的線性遞減函數。為了同時看重員工與管理者的績效,我們採用Bellman-Zadeh原則,此原則下模糊軸式三維指派問題將可簡化成非線性分式規劃問題模式,本論文並提出分支界限法和f-g折衷值法兩種演算法來對此模式進行求解。藉由測試題組的結果顯示,本研究所提出的演算法具有很好的求解效率和正確率。


    摘要 I ABSTRACT II 誌謝詞 III TABLE OF CONTENTS IV LIST OF TABLES VI 1. INTRODUCTION 1 2. LITERATURE REVIEW 4 2.1 The Classical Two-dimensional Assignment Problem 4 2.2 The Planar Three-dimensional Assignment Problem 5 2.3 The Axial Three-dimensional Assignment Problem 6 2.4 The Fuzzy Assignment Problem 9 3. MODEL CONSTRUCTION 11 3.1 Model Formulation 11 3.2 Model Transformation 14 4. SOLUTION PROCEDURE 18 4.1 The B&B Algorithm 18 4.2 The f-g Tradeoff Algorithm 22 4.3 A Numerical Example 26 5. COMPUTATIONAL RESULTS 34 6. CONCLUSIONS 40 REFERENCES 42

    [1] Balas, E. and M. J. Saltzman, “An Algorithm for the Three-Index Assignment Problem”, Operations Research, 39 (1991) 150-161.
    [2] Belacela, N. and M. R. Boulasselb, “Multicriteria Fuzzy Assignment Method: A Useful Tool to Assist Medical Diagnosis”, Artificial Intelligence in Medicine, 21 (2001) 201-207.
    [3] Bellman, R. E. and L.A. Zadeh, “Decision-Making in a Fuzzy Environment”, Management Science, 17B (1970) 141-164.
    [4] Chen, M. S., “On a Fuzzy Assignment Problem”, Tamkang Journal, 22 (1985) 407-411.
    [5] Dubois, D. and P. Fortemps, “Computing Improved Optimal Solutions to Max-Min Flexible Constraint Satisfaction Problems”, European Journal of Operational Research, 118 (1999) 95-126.
    [6] Feng, Y. and L. Yang, “A Two-Objective Fuzzy K-Cardinality Assignment Problem”, Journal of Computational and Applied Mathematics, 197 (2006) 233-244.
    [7] Frieze, A. M., “A Bilinear Programming Formulation of the 3-dimensional Assignment Problem”, Mathematical Programming, 7 (1974) 376-379.
    [8] Frieze, A. M., “Complexity of a 3-dimensional Assignment Problem”, European Journal of Operations Research, 13 (1983) 161-164.
    [9] Frieze, A. M. and J. Yadegar, “An Algorithm for Solving 3-Dimensional Assignment Problem with Application to Scheduling a Teaching Practice”, Journal of Operations Research Society, 32 (1981) 989-995.
    [10] Geetha, S. and M. N. Vartak, “Time-cost Tradeoff in a Three Dimensional Assignment Problem”, European Journal of Operational Research, 38 (1989) 255-258.
    [11] Gilbert, K. C. and R. B. Hofstra, “An Algorithm for a Class of Three-Dimensional Assignment Problems Arising in Scheduling Applications”, IIE Transactions, (1987) 29-33.
    [12] Gilbert, K. C. and R. B. Hofstra, “Multidimensional Assignment Problems”, Decision Sciences, 19 (1988) 306-321.
    [13] Hansen, P. and L. Kaufman, “A Primal-dual Algorithm for the Three-dimensional Assignment Problem”, Cahiers du CERO, 15 (1973) 327-336.
    [14] Kuhn, H. W., “The Hungarian Method for the Assignment Problem”, Naval Research Logistics Quarterly, 2 (1955) 83-97.
    [15] Kuhn, H. W., “The Hungarian Method for the Assignment Problem”, Naval Research Logistics Quarterly, 3 (1956) 253-258.
    [16] Lin, C. J. and U. P. Wen, “A Labeling Algorithm for the Fuzzy Assignment Problem”, Fuzzy Sets and Systems, 142 (2004) 373-391.
    [17] Little, J. D. C., K. G. Murty, D. W. Sweeney, and C. Karel, “An Algorithm for the Travelling Salesman Problem”, Operations Research, 11 (1963) 972-989.
    [18] Liu, L. Z. and Y. Z. Li, “The Fuzzy Quadratic Assignment Problem with Penalty: New Models and Genetic Algorithm”, Applied Mathematics and Computation, 174 (2006) 1229-1244.
    [19] Magos, D., “Tabu Search for the Planar Three-Index Assignment Problem”, Journal of Global Optimization, 8 (1996) 35-48.
    [20] Magos, D. and P. Miliotis, “An Algorithm for the Planar Three-Index Assignment Problem”, European Journal of Operational Research, 77 (1994) 141-153.
    [21] Malhotra, R., H. L. Bhatia and M. C. Puri, “The Three Dimensional Bottleneck Assignment Problem and Its Variants”, Optimization, 16 (1985) 245-256.
    [22] Olivo, P., “A Mix Algorithm for the Multidimensional Assignment Problem”, Rvista Di Matematica Per Le Scienze Economiche E Sociali, 6 (1983) 67-78.
    [23] Pierskalla, W. P., “The Tri-Substitution Method for the Three-Dimensional Assignment Problem”, Journal of the Canadian Operational Research Society, 5 (1967) 71-81.
    [24] Pierskalla, W. P., “The Multidimensional Assignment Problem”, Operations Research, 16 (1968) 422-431.
    [25] Poore, A. B. and Alexander J. Robertson III, “A New Lagrangian Relaxation Based Algorithm for a Class of Multidimensional Assignment Problems”, Computational Optimization and Applications, 8 (1997) 129-150.
    [26] Ridwan, M., “Fuzzy Preference Based Traffic Assignment Problem”,Transportation Research Part C, 12 (2004) 209-233.
    [27] Vlach, M., “Branch and Bound Method for the Three-Index Assignment Problem”, Ekonomicko-Matematicky Obzor, 2 (1967) 181-191.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE