簡易檢索 / 詳目顯示

研究生: 蘇祐男
Su, Yonan
論文名稱: 控制光折變晶體中的調變不穩定
Control Modulation Instability in Photorefractive Crystals
指導教授: 李瑞光
Lee, Ray-Kuang
口試委員: 鄭建宗
Jeng, Chien-Chung
陸亭樺
Lu, Ting-Hua
林元堯
Lin, Yuan-Yao
吳國安
Wu, Kuo-An
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 58
中文關鍵詞: 調變不穩定自發性圖案生成飽和型非線性
外文關鍵詞: modulation instability, spontaneous pattern formation, saturable nonlinearity
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文包含三個部分:藉由不同同調程度的光來控制調變不穩定(MI)、藉由訊號光與背景光光強度比例來控制MI、藉由週期性調變外加偏壓控制MI能見度變化範圍。第一部分介紹外加偏壓與同調長度組成的相圖。可以觀察到MI1與MI2的兩種狀態與它們共存態、橫向不穩定、光汶流等狀態以外。兩不同週期與方向光調變不穩定條紋的共存行為可以藉由非等向性非線性係數來解釋。平面波與MI1、MI1與MI2轉換邊界可以被描繪在相圖上。第二個工作解釋MI在高光強的抑制行為: 折射率對光強度響應呈現飽和非線性。可以藉由不同訊號光與背景光比例來控制高對比度MI條紋落在訊號光的範圍。第三個工作施加不同頻率的調變偏壓來控制MI對比度震盪幅度。當非直覺MI對比度震盪頻率峰值被觀察到時,這方法有可能用來量測系統內部隨時間的微擾變化頻率。


    This thesis covers three works: control Modulation instability (MI) by partial coherent light, control MI by background to signal beam intensity ratio, and control MI by periodically driving fi eld. The first work introduces the phase diagram of biased voltage versus coherence length. MI1, MI1/MI2, MI2, Transverse Instability (TI), Optical turbulence (OT) states can be observed. MI1/MI2 mixed state can be explained by unisotropic nonlinear indexes and the transition boundaries of plain wave to MI1, MI1 to MI2 phases can be depicted on the phase diagram. The second work explains the MI suppression behavior in high intensity region which reveals saturable type refractive index to light intensity response. One can control the clear MI pattern range of signal light intensity via signal to background intensity ratio. The third work controls MI variation range using external periodic driving field with fast charge carriers dynamics assumed. MI with periodic driving could be a promising tool for measuring perturbation frequency when non-intuitive resonance peak is observed.

    1 Introduction to Modulation Instability in Photorefractive Crystal............................... 1 1.1 Modulation Instability.............................1 1.2 Modulation Instability Analysis....................4 1.3 Transverse Instability Analysis....................6 1.4 Model for Photorefractive Medium: Band Transport Model..................................................10 1.5 Experimental Setup.................................14 2 Control Modulation Instability by Partial Coherent Light..................................................17 2.1 Introduction.......................................17 2.2 Perturbation theory for incoherent light...........18 2.3 Phase diagram for incoherent light.................21 2.4 Conclusion.........................................25 3 Control Modulation Instability by Background to Signal Beam Intensity Ratio...................................26 3.1 Introduction.......................................26 3.2 Model: Noninstantaneous Nonlinear Scrodinger Equation .......................................................27 3.3 Experimental Result................................33 3.4 Conclusion.........................................37 4 Control Modulation Instability by Periodically Driving Field..................................................38 4.1 Introduction.......................................38 4.2 Model for Square Wave Driving Field................39 4.3 Experiment.........................................45 4.4 Conclusion.........................................48 5 Summary and Outlook..................................49 5.1 Summary............................................49 5.2 Outlook............................................50 6 Appendix.............................................57

    [1] C. Sun, S. Jia, C. Barsi, S. Rica, A. Picozzi, and J. W. Fleischer, "Observation of the kinetic condensation of classical waves," Nature Physics 8, 470-474 (2012).
    [2] C. C. Jeng, Y. N. Su, R. C. Hong, and R. K. Lee, "Control modulation instability in photorefractive crystals by the intensity ratio of background to signal fields," Optics express 23, 10266-10271 (2015).
    [3] T. B. Benjamin, and J. E. Feir, "Disintegration of Wave Trains on Deep Water .1. Theory," Journal of Fluid Mechanics 27, 417-430 (1967).
    [4] V. I. Bespalov, and V. I. Talanov, "Filamentary Structure of Light Beams in Nonlinear Liquids," Jetp Lett-Ussr 3, 307 (1966).
    [5] V. I. Karpman, "Self-Modulation of Nonlinear Plane Waves in Dispersive Media," Jetp Lett-Ussr 6, 277 (1967).
    [6] T. Shinbrot, and F. J. Muzzio, "Noise to order," Nature 410, 251-258 (2001).
    [7] A. Hasegawa, Plasma instabilities and nonlinear effects (Springer-Verlag, Berlin, New York,, 1975).
    [8] C. K. W. Tam, "Amplitude Dispersion and Nonlinear Instability of Whistlers," Phys Fluids 12, 1028- (1969).
    [9] A. Hasegawa, "Study of Self-Trapping Instability of Plasma Cyclotron Waves by Computer Experiments," B Am Phys Soc 15, 1455-1520 (1970).
    [10] A. Hasegawa, "Theory and Computer Experiment on Self-Trapping Instability of Plasma Cyclotron Waves," Phys Fluids 15, 870-890 (1972).
    [11] M. I. Carvalho, S. R. Singh, and D. N. Christodoulides, "Modulational instability of quasi-plane-wave optical beams biased in photorefractive crystals," Opt Commun 126, 167-174 (1996).
    [12] G. P. Agrawal, Nonlinear fiber optics (Elsevier / Academic Press, Amsterdam ; Boston, 2007).
    [13] A. M. Rubenchik, S. K. Turitsyn, and M. P. Fedoruk, "Modulation instability in high power laser amplifiers," Optics express 18, 1380-1388 (2010).
    [14] M. Droques, B. Barviau, A. Kudlinski, M. Taki, A. Boucon, T. Sylvestre, and A. Mussot, "Symmetry-breaking dynamics of the modulational instability spectrum," Optics letters 36, 1359-1361 (2011).
    [15] K. Nithyanandan, R. V. J. Raja, and K. Porsezian, "Modulational instability in a twin-core fiber with the effect of saturable nonlinear response and coupling coefficient dispersion," Physical Review A 87 (2013).
    [16] D. Kip, M. Soljacic, M. Segev, E. Eugenieva, and D. N. Christodoulides, "Modulation instability and pattern formation in spatially incoherent light beams," Science 290, 495-498 (2000).
    [17] M. Soljacic, M. Segev, T. Coskun, D. N. Christodoulides, and A. Vishwanath, "Modulation instability of incoherent beams in noninstantaneous nonlinear media," Physical review letters 84, 467-470 (2000).
    [18] M. F. Shih, C. C. Jeng, F. W. Sheu, and C. Y. Lin, "Spatiotemporal optical modulation instability of coherent light in noninstantaneous nonlinear media," Physical review letters 88 (2002).
    [19] D. V. Dylov, and J. W. Fleischer, "Modulation instability of a coherent-incoherent mixture," Optics letters 35, 2149-2151 (2010).
    [20] W. Krolikowski, O. Bang, J. J. Rasmussen, and J. Wyller, "Modulational instability in nonlocal nonlinear Kerr media," Phys Rev E 64 (2001).
    [21] A. Armaroli, and F. Biancalana, "Tunable modulational instability sidebands via parametric resonance in periodically tapered optical fibers," Optics express 20, 25096-25110 (2012).
    [22] C. C. Jeng, Y. Y. Lin, R. C. Hong, and R. K. Lee, "Optical Pattern Transitions from Modulation to Transverse Instabilities in Photorefractive Crystals," Physical review letters 102 (2009).
    [23] M. Shen, Y. N. Su, R. C. Hong, Y. Y. Lin, C. C. Jeng, M. F. Shih, and R. K. Lee, "Observation of phase boundaries in spontaneous optical pattern formation," Physical Review A 91 (2015).
    [24] Y. S. Kivshar, and D. E. Pelinovsky, "Self-focusing and transverse instabilities of solitary waves," Phys Rep 331, 118-195 (2000).
    [25] A. V. Mamaev, M. Saffman, D. Z. Anderson, and A. A. Zozulya, "Propagation of light beams in anisotropic nonlinear media: From symmetry breaking to spatial turbulence," Physical Review A 54, 870-879 (1996).
    [26] Y. Y. Lin, R. K. Lee, and Y. S. Kivshar, "Suppression of soliton transverse instabilities in nonlocal nonlinear media," J Opt Soc Am B 25, 576-581 (2008).
    [27] Y. Y. Lin, R. K. Lee, and Y. S. Kivshar, "Transverse instability of transverse-magnetic solitons and nonlinear surface plasmons," Optics letters 34, 2982-2984 (2009).
    [28] A. V. Mamaev, M. Saffman, and A. A. Zozulya, "Propagation of dark stripe beams in nonlinear media: Snake instability and creation of optical vortices," Physical review letters 76, 2262-2265 (1996).
    [29] G. Biondini, and D. Mantzavinos, "Universal Nature of the Nonlinear Stage of Modulational Instability," Physical review letters 116 (2016).
    [30] M. Isobe, "Calculation and Application of 1st-Order Cnoidal Wave Theory," Coast Eng 9, 309-325 (1985).
    [31] V. M. Petnikova, V. V. Shuvalov, and V. A. Vysloukh, "Multicomponent photorefractive cnoidal waves: Stability, localization, and soliton asymptotics," Phys Rev E 60, 1009-1018 (1999).
    [32] V. A. Vysloukh, V. M. Petnikova, K. V. Rudenko, and V. V. Shuvalov, "Multicomponent 'dark' cnoidal waves: stability and soliton asymptotes," Quantum Electron+ 29, 613-617 (1999).
    [33] N. M. Litchinitser, W. Krolikowski, N. N. Akhmediev, and G. P. Agrawal, "Asymmetric partially coherent solitons in saturable nonlinear media," Phys Rev E 60, 2377-2380 (1999).
    [34] V. A. Aleshkevich, V. A. Vysloukh, and Y. V. Kartashov, "Propagation of cnoidal waves in a medium with a saturable nonlinear response," Quantum Electron+ 31, 257-262 (2001).
    [35] Y. V. Kartashov, A. A. Egorov, V. A. Vysloukh, and L. Torner, "Stable one-dimensional periodic waves in Kerr-type saturable and quadratic nonlinear media," J Opt B-Quantum S O 6, S279-S287 (2004).
    [36] N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic Storage in Electrooptic Crystals .1. Steady-State," Ferroelectrics 22, 949-960 (1979).
    [37] C. Denz, P. Jander, M. Schwab, O. Sandfuchs, M. Belic, and F. Kaiser, "Transverse pattern formation and its control in photorefractive optics," Ann Phys-Berlin 13, 391-402 (2004).
    [38] P. Yeh, Introduction to photorefractive nonlinear optics (Wiley, New York, 1993).
    [39] M. Peccianti, and G. Assanto, "Incoherent spatial solitary waves in nematic liquid crystals," Optics letters 26, 1791-1793 (2001).
    [40] V. V. Shkunov, and D. Z. Anderson, "Radiation transfer model of self-trapping spatially incoherent radiation by nonlinear media," Physical review letters 81, 2683-2686 (1998).
    [41] D. Kip, M. Soljacic, M. Segev, S. M. Sears, and D. N. Christodoulides, "(1+1)-Dimensional modulation instability of spatially incoherent light," J Opt Soc Am B 19, 502-512 (2002).
    [42] C. C. Jeng, M. F. Shih, K. Motzek, and Y. Kivshar, "Partially incoherent optical vortices in self-focusing nonlinear media," Physical review letters 92 (2004).
    [43] W. H. Chu, C. C. Jeng, C. H. Chen, Y. H. Liu, and M. F. Shih, "Induced spatiotemporal modulation instability in a noninstantaneous self-defocusing medium," Optics letters 30, 1846-1848 (2005).
    [44] T. H. Coskun, D. N. Christodoulides, Y. R. Kim, Z. G. Chen, M. Soljacic, and M. Segev, "Bright spatial solitons on a partially incoherent background," Physical review letters 84, 2374-2377 (2000).
    [45] J. Klinger, H. Martin, and Z. G. Chen, "Experiments on induced modulational instability of an incoherent optical beam," Optics letters 26, 271-273 (2001).
    [46] M. Mitchell, and M. Segev, "Self-trapping of incoherent white light," Nature 387, 880-883 (1997).
    [47] M. Mitchell, Z. G. Chen, M. F. Shih, and M. Segev, "Self-trapping of partially spatially incoherent light," Physical review letters 77, 490-493 (1996).
    [48] D. Vonderlinde, and A. M. Glass, "Photorefractive Effects for Reversible Holographic Storage of Information," Appl Phys 8, 85-100 (1975).
    [49] P. Gunter, "Holography, Coherent-Light Amplification and Optical-Phase Conjugation with Photorefractive Materials," Phys Rep 93, 199-299 (1982).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE