研究生: |
許谷榕 Hsu, Ku-Jung |
---|---|
論文名稱: |
變分法在多體多中心問題的應用 Variational Methods with Applications to the Few-Body-Few-Center System |
指導教授: |
陳國璋
Chen, Kuo-Chang |
口試委員: |
蔡東和
Tsai, Dong-Ho 陳兆年 Chen, Chao-Nien 莊重 Juang, Jonq 蔡亞倫 Tsai, Ya-Lun |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 58 |
中文關鍵詞: | 多體多中心問題 、形變方法 、存在性 、多體問題 |
外文關鍵詞: | few-body-few-center, deformation, existence, n-body |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文的目的是去研究區域形變跟整體形變方法在多體多中心問題上面的應用。
最近幾十年來,變分法已經被廣泛應用在建構多體問題和多中心問題的週期解以及相對週期解上面。在排除解的碰撞的部分,總是用到區域形變或整體形變方法之中其中一個方法,但不是兩者。所以我們會感興趣的去問:是不是存在著一種較困難的問題,是必須同時使用兩種方法才能解開?
多體多中心問題就是這樣的例子。在這篇論文的第五章,我們就有詳細去描述如何用這兩個方法得出解的存在性。
多體多中心問題是多體問題跟多中心問題的組合,而多中心問題是多體問題簡化的形式,因此我們也會有興趣去研究界在它們之間是否還存在哪些有趣的問題。
基於這些原因,所以我們就聚焦在n體m中心系統,這個系統包含 n個自由質點跟 m個固定質點,然後我們去研究n個自由質點在整個系統的引力下,他們的軌跡跟行為。在這篇文章裡,我們證明了其中一些型態的解的存在性。
The objective of this thesis is to study the applications of local deformation methods and global estimates in the few-body-few-center problem.
In recent years, variational methods have been applied to construct many periodic and relative periodic solutions for both the n-body and the n-center problem. Collision avoidance is often carried out by either local deformation or global estimate for the action functional, but not both. It would be interesting to find examples which require both methods, we will show that the fewbody-few-center systems are such examples. In Chapter 5, we present examples for which both techniques are needed. These examples are combinations of n-body and n-center problems, that is, the few-body-few-center problem.
Another motivation for our study of the few-body-few-center systems is due to the fact that n-body systems are generally much more complex than n-center systems, as the later is often served as simplification of the former, it would be interesting to understand the intermediate case.
Due to reasons above, here we focus on the n1-body-n2-center system, meaning the system has n1 free bodies and n2 fixed ones. We want to study the motions of n1 free bodies under the gravitational influence of the whole system. Comparing with n-center systems, some nice features of action minimizers are no longer valid in n1-body-n2-center systems, such as collision reflection property. We will show existence of some collision-free minimizers for such systems.
[1] Arnol’d, V. I., Kozlov, V. V., Neishtadt, A. I., Mathematical aspects of classical and celestial mechanics.
Translated from the 1985 Russian original by A. Iacob. Springer-Verlag, Berlin. (1997)
[2] Bolotin, S. V. Nonintegrability of the n-center problem for n> 2. Vestnik Mosk. Gos. Univ., Ser. I, math. mekh. 3, 65-68. (1984)
[3] Broucke, R. Stability of periodic orbits in the elliptic, restricted three-body problem. AIAA Journal 7, 1003-1009. (1969)
[4] Chen, K.-C., Variational methods and periodic solutions of Newtonian N-Body problems. Ph.D thesis, University of Minnesota. (2001)
[5] Chen, K.-C., Yu, G., Syzygy sequences of the N-center problem. Ergod. Th. & Dynam. Sys. (2016).
[6] Chen, K.-C., Binary decompositions for planar N-body problems and symmetric periodic solutions. Arch. Ration. Mech. Anal. 170, 247-276. (2003)
[7] Chen, K.-C., Existence and minimizing properties of retrograde orbits to the three-body problem with various choices of masses, Ann. of Math. 167, 325-348. (2008)
[8] Chen, K.-C., A minimizing property of hyperbolic Keplerian orbits. J. Fixed Point Theory Appl. 19 281-287. (2017)
[9] Chenciner, A., Action minimizing solutions of the Newtonian n-body problem: From homology symmetry. Proc. Internat. Congress of Mathematicians Vol III, 279-294. (2002)
[10] Chenciner, A., Montgomery, R., A remarkable periodic solution of the three-body problem in the case of equal masses. Annals of Math. 152 881-901. (2000)
[11] Ferrario, D. L. Terracini, S. On the existence of collisionless equivariant minimizers for the classical n-body problem. Invent. Math. 155(2), 305-362. (2004)
[12] Gordon, W., A minimizing property of Keplerian orbits. Amer. J. Math. 99, 961-971. (1977)
[13] Kltin, M. Knauf, A. Classical Planar Scattering by Coulombic Potentials. Lecture Notes in Physics, Springer, Berlin. (1992)
[14] Knauf, A. Taimanov, I. A. On the Integrability of the n-centre problem. Math. Annalen 331 631-649. (2004) [15] Siegel, C. L. Moser, J. K. Lectures on Celestial Mechanics. Translation from the German by Charles I. Kalme. Die Grundlehren der mathematischen Wissenschaften, 187. Springer-Verlag, New York-Heidelberg. (1971)
[16] Soave, N. Terracini, S. Symbolic dynamics for the N-centre problem at negative energies. Discrete Contin. Dyn. Syst. -Series A, 32, 3245-3301. (2012)
[17] Sperling, H. J. On the real singularities of the N-body problem. J. Reine Angew. Math. 245, 15-40. (1970)
[18] Sundman, K. F. Mm´oire sur le probl´eme des trois corps. Acta Math. 36, 105-179. (1912)
[19] Szebehely, V. Theory of orbit: The restricted problem of three Bodies. Elsevier. (2012) APA
[20] Venturelli A., Application de la minimisation de l’action au Probl´eme des N corps dans le plan et dans l’espace. Thesis, University Paris VII. (2002)
[21] Waldvogel, J. Fundamentals of Regularization in Celestial Mechanics and Linear Perturbation Theory In Extra-Solar Planets: The Detection, Formation, Evolution and Dynamics of Planetary Systems, 169-184. Taylor & Francis. (2010)
[22] Wintner, A. The Analytical Foundations of Celestial Mechanics. Princeton Mathematical Series, v.5. Princeton University Press, Princeton, N. J. (1941)
[23] Xue, J. Dmitry Dolgopyat Non-Collision Singularities in the Planar Two-Center-Two-Body Problem. Commun. Math. Phys., 345, 797-879. (2016)
[24] Yu, G., Periodic solutions of the planar N-center problem with topological constraints. Discrete Contin. Dynam. Syst. A 36, 5131-5162. (2016)