簡易檢索 / 詳目顯示

研究生: 吳恬迪
Wu, Tiend-Di
論文名稱: Synthesis and optical properties of pseudorotaxane crystals
指導教授: 堀江正樹
Masaki Horie
口試委員: 蘇安仲
Su, An-chung
游進陽
Yu, Chin-yang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 134
中文關鍵詞: 超分子化學分子機器
外文關鍵詞: Molecular machine, Pseudorotaxnae, Crystal optical materials
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this thesis, molecular alignment of pseudorotaxanes in single crystal state and an optical anisotropy of the crystals are described.
    In Chapter 2, a series of new pseudorotaxanes having interlocked structure of dibenzo[24]crown-8 ether (DB24C8) or 4,4’,5,5’-tetrabromodibenzo[24]crown-8 ether (DB24C8-Br4) and axle molecules based on ammonium cation are synthesized changing substituents of tolyl and phenyl groups in the axle molecules. Pseudorotaxane structures are analyzed by X-ray single crystallography, which shows that the pseudorotaxanes are stabilized their supermolecular structures by following non-covalent interactions in solid state: (1) hydrogen bonds (N+-H…O and C-H…O) between the oxygen acceptor atoms of the DB24C8 or DB24C8-Br4 ring molecule and the hydrogen donor atoms of the cation’s NH2+ and CH2 groups, (2) pi-pi intramolecular interactions between aromatic part of ring molecules and tolyl or phenyl part of axle molecules, and (3) pi-pi intermolecular interactions between aromatic rings. These crystallographic data are used for discussion of optical properties of pseudorotaxane crystals. The crystals of pseudorotaxanes having pi-pi intramolecular interactions tend to show higher birefringence value. On the other hand, the pseudorotaxanes with C-H…pi intramolecular interactions instead of the pi-pi intramolecular interactions give lower birefringence value.
    Chapter 3 shows that [2]pseudorotaxanes composed of ferrocene-containing axle with DB24C8 act as a thermally-driven molecular switch in the single-crystal state. The pseudorotaxane structure can be altered reversibly in the single crystal state by thermal stimulation by observation of differential scanning calorimetry (DSC) and polarized optical microscope combined with hot stage. When the counter anion is replaced from PF6− to AsF6−, the pseudorotaxane molecule applies C-H…pi intramolecular interaction which does not show crystal-to-crystal phase-transition. Birefringence values of these crystals are measured changing composition ratios of the counter anions (PF6−/AsF6−). The pseudorotaxanes with higher PF6− compositions show higher birefringences due to well-aligned aromatic rings derived from pi-pi interactions, whereas those with higher AsF6− compositions exhibit lower birefringence because of less ordered C-H…pi interactions.


    Abstract I Table of Contents III Chapter 1. Introduction and aim 1 1.1 Introduction of supramolecular chemistry 1 1.2 Molecular machines 7 1.3 Movements of molecules in solid state 16 1.4 Applications of switchable rotaxane 19 1.5 Movements of Pseudorotaxanes in crystal state 22 1.6 Aim of the work 24 Chapter 2. Synthesis and optical properties of pseudorotaxanes composed of crown ether and ammonium cation 25 2.1 Introduction 25 2.2 Synthesis of pseudorotaxanes 27 2.3 X-ray single crystallography 36 2.4 Thermal properties 50 2.5 Optical properties 57 2.6 Conclusion 60 Chapter 3. Optical properties of pseudorotaxanes composed of crown ether with ferrocene-containing axis molecule 61 3.1 Introduction 61 3.2 Optical properties 65 3.3 Conclusion 79 Chapter 4. Experimental section 80 4.1 General methods 80 4.2 Preparation of bis(4-methylbezyl)ammonium hexafluorophosphate, [1H]+(PF6)- 85 4.3 Preparation of 4-methylbenzyl ammonium hexafluorophosphate, [2H]+(PF6)- 88 4.4 Preparation of dibenzylammonium hexafluorophosphate, [3H]+(PF6)- 90 4.5 Preparation of (benzyl)(2-phenylethyl)ammonium hexafluorophosphate, [4H]+(PF6)- 92 4.6 Preparation of (2-phenylethylamine)(4-methylbezyl)ammonium hexafluorophosphate, [5H]+(PF6)- 94 4.7 Preparation of (2-p-tolylethylamine)(benzyl)ammonium hexafluorophosphate, [6H]+(PF6)- 96 4.8 Preparation of (2-p-tolylethylamine)(4-methylbezyl)ammonium hexafluorophosphate, [7H]+(PF6)- 98 4.9 Preparation of (1-Adamantane-methyl)(4-methylbezyl)ammonium hexafluorophosphate, [8H]+(PF6)- 100 4.10 Preparation of 4,4’,5,5’-tetrabromodibenzo[24]crown-8 ether 102 4.11 Preparation of [2]pseudorotaxanes: [1DB24C8-Br4](PF6), [2DB24C8-Br4](PF6) and [3DB24C8-Br4](PF6) 104 4.12 Preparation of [2]pseudorotaxanes: [1DB24C8](PF6), [2DB24C8](PF6) and [3DB24C8](PF6) 109 4.13 Preparation of [2]pseudorotaxanes: [4DB24C8-Br4](PF6), [5DB24C8-Br4](PF6), [6DB24C8-Br4](PF6) and [7DB24C8-Br4](PF6) 111 4.14 Preparation of [2]pseudorotaxanes: [4DB24C8](PF6), [5DB24C8](PF6), [6DB24C8](PF6) and [7DB24C8](PF6) 117 4.15 Preparation of [2]pseudorotaxanes of [8DB24C8-Br4][PF6] and [8DB24C8][PF6] 122 4.16 X-ray single crystallography 125 Chapter 5. Conclusion 129 References 131

    References
    [1] K. L. Wolf, H. Frahm, H. Harms, Z Phys Chem B-Chem E 1937, 36, 237-287.
    [2] K. L. Wolf, R. Wolff, Angew Chem-Ger Edit 1949, 61, 191-201.
    [3] P. A. G. P.D. Beer, D.K. Smith, , Supramolecular Chemistry, Oxford University Press: Great Britain, 1999.
    [4] J. M. Lehn, Angew. Chem. Int. Ed. Engl. 1988, 27, 89-112.
    [5] E. Wasserman, J Am Chem Soc 1960, 82, 4433-4434.
    [6] M. Cesario, C. O. Dietrichbuchecker, J. Guilhem, C. Pascard, J. P. Sauvage, J Chem Soc Chem Comm 1985, 244-247.
    [7] T. J. Hubin, D. H. Busch, Coordin Chem Rev 2000, 200, 5-52.
    [8] D. B. Amabilino, P. R. Ashton, A. S. Reder, N. Spencer, J. F. Stoddart, Angew Chem Int Edit 1994, 33, 1286-1290.
    [9] K. S. Chichak, S. J. Cantrill, A. R. Pease, S. H. Chiu, G. W. V. Cave, J. L. Atwood, J. F. Stoddart, Science 2004, 304, 1308-1312.
    [10] T. J. Hubin, A. G. Kolchinski, A. L. Vance, D. H. Busch, Adv. Supramol. Chem. 1999, 237–357.
    [11] M. G. L. v. d. Heuvel, C. Dekker, Science 2007, 317.
    [12] F. J. Kull, E. P. Sablin, R. Lau, R. J. Fletterick, R. D. Vale, Nature 1996, 380, 550-555.
    [13] J. D. Badjic, V. Balzani, A. Credi, S. Silvi, J. F. Stoddart, Science 2004, 303, 1845-1849.
    [14] T. D. Nguyen, H. R. Tseng, P. C. Celestre, A. H. Flood, Y. Liu, J. F. Stoddart, J. I. Zink, P Natl Acad Sci USA 2005, 102, 10029-10034.
    [15] S. Saha, E. Johansson, A. H. Flood, H. R. Tseng, J. I. Zink, J. F. Stoddart, Chem-Eur J 2005, 11, 6846-6858.
    [16] A. J. Vernall, L. A. Stoddart, S. J. Briddon, S. J. Hill, B. Kellam, J Med Chem 2012, 55, 1771-1782.
    [17] J. M. Spruell, W. F. Paxton, J. C. Olsen, D. Benitez, E. Tkatchouk, C. L. Stern, A. Trabolsi, D. C. Friedman, W. A. Goddard, J. F. Stoddart, J Am Chem Soc 2009, 131, 11571-11580.
    [18] W. S. Jeon, A. Y. Ziganshina, J. W. Lee, Y. H. Ko, J. K. Kang, C. Lee, K. Kim, Angew Chem Int Edit 2003, 42, 4097-4100.
    [19] Y. Liu, A. H. Flood, P. A. Bonvallett, S. A. Vignon, B. H. Northrop, H. R. Tseng, J. O. Jeppesen, T. J. Huang, B. Brough, M. Baller, S. Magonov, S. D. Solares, W. A. Goddard, C. M. Ho, J. F. Stoddart, J Am Chem Soc 2005, 127, 9745-9759.
    [20] A. Coskun, M. Banaszak, R. D. Astumian, J. F. Stoddart, B. A. Grzybowski, Chem Soc Rev 2012, 41, 19-30.
    [21] R. A. van Delden, M. K. J. ter Wiel, M. M. Pollard, J. Vicario, N. Koumura, B. L. Feringa, Nature 2005, 437, 1337-1340.
    [22] N. Koumura, E. M. Geertsema, M. B. van Gelder, A. Meetsma, B. L. Feringa, J Am Chem Soc 2002, 124, 5037-5051.
    [23] Y. Shirai, J. F. Morin, T. Sasaki, J. M. Guerrero, J. M. Tour, Chem Soc Rev 2006, 35, 1043-1055.
    [24] G. Vives, J. M. Tour, Accounts Chem Res 2009, 42, 473-487.
    [25] M. A. Garcia-Garibay, Accounts Chem Res 2003, 36, 491-498.
    [26] M. A. Garcia-Garibay, Angew Chem Int Edit 2007, 46, 8945-8947.
    [27] T. A. V. Khuong, J. E. Nunez, C. E. Godinez, M. A. Garcia-Garibay, Accounts Chem Res 2006, 39, 413-422.
    [28] T. Akutagawa, H. Koshinaka, D. Sato, S. Takeda, S. I. Noro, H. Takahashi, R. Kumai, Y. Tokura, T. Nakamura, Nat Mater 2009, 8, 342-347.
    [29] J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y. S. Shin, H. R. Tseng, J. F. Stoddart, J. R. Heath, Nature 2007, 445, 414-417.
    [30] Y. Chen, D. A. A. Ohlberg, X. M. Li, D. R. Stewart, R. S. Williams, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart, D. L. Olynick, E. Anderson, Appl Phys Lett 2003, 82, 1610-1612.
    [31] H. B. Yu, Y. Luo, K. Beverly, J. F. Stoddart, H. R. Tseng, J. R. Heath, Angew Chem Int Edit 2003, 42, 5706-5711.
    [32] M. Horie, T. Sassa, D. Hashizume, Y. Suzaki, K. Osakada, T. Wada, Angew Chem Int Edit 2007, 46, 4983-4986.
    [33] Y. Suzaki, T. Taira, K. Osakada, M. Horie, Dalton T 2008, 4823-4833.
    [34] P. R. Ashton, M. C. T. Fyfe, S. K. Hickingbottom, J. F. Stoddart, A. J. P. White, D. J. Williams, J Chem Soc Perk T 2 1998, 2117-2128.
    [35] C. Johnsen, P. C. Stein, K. A. Nielsen, A. D. Bond, J. O. Jeppesen, Eur J Org Chem 2011, 759-769.
    [36] I. R. Hanson, D. L. Hughes, M. R. Truter, J Chem Soc Perk T 2 1976, 972-976.
    [37] P. R. Ashton, P. J. Campbell, E. J. T. Chrystal, P. T. Glink, S. Menzer, D. Philp, N. Spencer, J. F. Stoddart, P. A. Tasker, D. J. Williams, Angew Chem Int Edit 1995, 34, 1865-1869.
    [38] N. Noujeim, K. L. Zhu, V. N. Vukotic, S. J. Loeb, Org Lett 2012, 14, 2484-2487.
    [39] P. R. Ashton, E. J. T. Chrystal, P. T. Glink, S. Menzer, C. Schiavo, N. Spencer, J. F. Stoddart, P. A. Tasker, A. J. P. White, D. J. Williams, Chem-Eur J 1996, 2, 709-728.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE