研究生: |
王信凱 Wang, Hsin-Kai |
---|---|
論文名稱: |
微型光生物反應器應用於活體細胞的即時表現與細菌光基因電路演化調控 Mini photobioreactors for in vivo, real time characterization and evolutionary tuning of bacterial optogenetic circuit |
指導教授: |
楊雅棠
Yang, Ya-Tang |
口試委員: |
黃士豪
Huang, Shih-Hao 藍忠昱 Lan, Chung-Yu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 生物反應器 、演化 、自動化 、基因電路 、螢光偵測 |
外文關鍵詞: | bioreactor, evolve, automated, gene circuit, fluorescent detection |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
流式細胞儀是利用光照射細菌,來檢測細菌的光基因電路表現的標準方法,但是它必須先在外部誘發基因,再放進儀器中偵測基因表現,是需要耗費較多人力成本,而且實驗上也較為繁瑣。在本研究中,我們設計了一個工作體積約10ml的閃爍計數瓶的生物反應器,能夠即時偵測CCaS-CCaR光感測系統的基因表現。報導基因蛋白的光密度、螢光蛋白偵測和誘導基因的光源,由四個發光二極體和兩個光電晶體組成。經過市售偵測儀器校正之後,此實驗裝置能夠自動化操作,同時做細菌培養並記錄其生長和基因表現,不需要額外的人力操作。我們做了用不同有機物(葡萄糖、琥珀酸鹽、乙酸鹽和丙酮酸鹽)作為基本培養基的碳來源實驗,觀察其細菌生長的基因表達。還有透過連續稀釋步驟證明光基因電路調變的演化實驗。
Current standard protocol to characterize such optogenetic circuit of bacterial cells using flow cytometry in light tubes and well plates for light exposure is tedious, labor intensive and cumbersome. In this work, we engineer a bioreactor of working volume ~10 ml for in vivo, real time optogenetic characterization of E. coli with a CCaS-CCaR light sensing system. The optical density, fluorescence detection for reporter protein as well as the light input stimuli are provided by four light emitting diode sources and two photodetectors. Once calibrated, the device can cultivate the cells and record both the microbial growth and gene expression without human intervention. We measure gene expression for cell growth under different organic substrates(glucose, succinate, acetate, and pyruvate) as carbon source in minimal medium and demonstrate evolutionary tuning of optogenetic circuit by serial dilution passage.
[1] Levskaya, A., Chevalier, A. A., Tabor, J. J., Simpson, Z. B., Lavery, L. A., Levy, M., Davidson, E. A., Scouras, A., Ellington, A. D., Marcotte, E. M., and Voigt, C. A. (2005) Synthetic biology: Engineering Escherichia coli to see light. Nature 438, 441-442.
[2] Möglich, A., and Moffat, K. (2007) Structural basis for light- dependent signaling in the dimeric LOV domain of the photosensor YtvA. J. Mol. Biol. 373, 112-126.
[3] Möglich, A., Ayers, R. A. & Moffat, K. Design and signaling mechanism of light-regulated histidine kinases. J. Mol. Biol. 385, 1433–1444 (2009).
[4] Ohlendorf, R., Vidavski, R. R., Eldar, A., Moffat, K. and Möglich, A.(2012) From dusk till dawn: one-plasmid systems for light-regulated gene expression. J. Mol. Biol. 416, 534-542.
[5] Schmidl, S. R., Sheth, R. U., Wu, A., and Tabor, J. J. (2014) Refactoring and optimization of light-switchable Escherichia coli two-component systems. ACS. Synth. Biol., 3, 820-831.
[6] Ryu, M.-H. & Gomelsky, M. (2014) Near-infrared light responsive synthetic c-di-GMP module for optogenetic applications. ACS Synth. Biol. 3, 802–810.
[7] Shimizu-Sato, S., Huq, E., Tepperman, J. M. and Quail, P. H. (2002) A light-switchable gene promoter system. Nat. Biotechnol. 20, 1041–1044.
[8] Kennedy, M. J. et al. Rapid blue-light-mediated induction of protein interactions in living cells. (2010) Nat. Methods 7, 973–975.
[9] Rizzini, L. et al. (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332, 103–106.
[10] Richter, F. et al. (2015) Upgrading a microplate reader for photobiology and all-optical experiments. Photochem. Photobiol. Sci. 14, 270–279 (2015).
[11] Olson, E. J., Hartsough, L. A., Landry, B. P., Shroff, R., and Tabor, J. J. (2014) Characterizing bacterial gene circuit dynamics with optically programmed gene expression signals. Nat. Methods 11, 449-455.
[12] Gerhardt, K. P. et al. (2016) An open-hardware platform for optogenetics and photobiology. Sci. Rep. 6, 35363; doi: 10.1038/srep35363 (2016).
[13] Lee, J. M., Lee, J., Kim, T. and Lee, S. K. (2013) Switchable gene expression in Escherichia coli using a miniaturized photobioreactor. PLoS One 8, e52382 (2013).
[14] Liu, P. C., Lee, Y. T., Wang, C.Y., and Yang, Y. T. (2016) Design and use of a low cost, automated morbidostat for adaptive evolution of bacteria under antibiotic drug selection. J. Vis. Exp. 1154, e54426, xx-xx.
[15] Toprak, E., Veres, A., Yildiz, S., Pedraza, J. M., Chait, R., Paulsson, J., and Kishony, R. (2013) Building a morbidostat: An automated continuous-culture device for studying bacterial drug resistance under dynamically sustained drug inhibition. Nat. Protoc. 8, 555−567.
[16] Takahashi, C. N., Miller, A. W., Ekness, F., Dunham, M. J., and Klavins, E. (2014) A low cost, customizable turbidostat for use in synthetic circuit characterization. ACS Synth. Biol., DOI: 10.1021/ sb500165g.
[17] Paliy, O., Gunasekera, T. S. Growth of E. coli BL21 in minimal media with different gluconeogenic carbon sources and salt contents. Appl. Microbiol. Biotechnol. 73, 1169-1172, (2007).
[18] Orth, J. D., Thiele, I., Palsson, B. Ø., What is flux balance analysis, Nat. Biotech., 28, 245-248, (2010).
[19] Olson, E. J., Hartsough, L. A., Landry, B. P., Shroff, R. and Tabor, J. J. (2014) Characterizing bacterial gene circuit dynamics with optically programmed gene expression signals. Nature Methods, 11, 449-455