研究生: |
劉耀文 |
---|---|
論文名稱: |
偏斜常態分配在衝擊問題上的應用 Applications of skew-normal distribution on the impact problem |
指導教授: | 張延彰 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
南大校區系所調整院務中心 - 應用數學系所 應用數學系所(English) |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 19 |
中文關鍵詞: | 多變量偏斜常態分配 、強度-負載 |
外文關鍵詞: | multivariate skew-normal distribution, Strength –stress |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
強度-負載模型是可靠度理論中,相當重要的主題。對此主題的討論中,常以常態隨機變數作為基本的假設。由於負載造成的損傷不一定具對稱性,故此處我們慮以Azzalini 和 Dalla-Valle(1996) 所提出的多變量偏斜常態分配作為負載造成產品損傷情形的假設。我們也進一步將多次負載累積的傷害以常態隨機變數累加後轉換成偏斜常態處理。我們得到此模型下,造成產品損壞的負載次數的期望及機率分配。
Abstract
Strength –stress model is a very important topic of reliability theory.Discussion of this topic,normal random variable is often as a basic assumption.Cause the damage may not have symmetry,so we consider multivariate skew-normal distribution by Azzalini and Dalla-Valle (1996) proposed be a assumption with damage of product.We also cumulative the damage of stress times by the additions of normal random variable converted into skew-normal distribution.We got the expectations of the product fail with stress and it's distribution.
參考文獻
AZZALINI A. (1985). A class of distributions which includes the normal ones. SCANDINAVIAN JOURNAL OF STATISTICS. p171-178
AZZALINI A. (1986). Further results on a class of distributions which includes the normal one. p199-208
AZZALINI A. ,DALLA VALLE A. (1996). The multivariate Skew-normal Distribution. p715-726
E.E.LEWIS. INTRODUCTION TO RELIABILITY ENGINEERING. p171-183
K.C.Kapur , L.R. Lamberson .Reliability in Engineering Design. ,p77-86
K. V. Mardia, J. T. Kent, J. M. Bibby. (1979). Multivariate analysis. p459
Owen D.B. (1956). Tables for computing bivariate normal probabilities,
p1075–1090.
Patefield M. and Tandy D. (2000) Fast and accurate Calculation of Owen’s T-Function, Journal of Statistical Software. p1-25
Wikipedia.(2014,july 22)
http://en.wikipedia.org/wiki/Skew_normal_distribution
高婉蕙 (民國101年). An Application of Compound Passion Process to Reliability Computation, p6-11