簡易檢索 / 詳目顯示

研究生: 張育瑋
Chang, Yu-Wei
論文名稱: 利用θ-Trio攻擊社群偵測演算法
Attacking social network detection algorithm using θ-Trio
指導教授: 沈之涯
Shen, Chih-Ya
許倍源
Hsu, Bay-Yuan
口試委員: 張智傑
Chang, Chih-Chieh
林裕訓
Lin, Yu-Hsun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 31
中文關鍵詞: 社群網路演算法圖勘論網路攻擊
外文關鍵詞: social network, algorithm, graph mining, network attack
相關次數: 點閱:28下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,關於如何破壞社群網絡的相關研究受到人們廣大的討論,這包括社
    群網路偵測、異常檢測和圖分析等具有廣泛重要性和應用的領域。此外,一些
    人嘗試使用基於機器學習或演算法的方法來攻擊這些任務。他們可能攻擊數據
    集、演算法或機器學習模型,並設計一些對應的算法來降低目標效能。攻擊社
    群網路偵測是其中最受歡迎的任務之一。例如,人們可以創建虛假的帳戶並冒
    充特定社群的成員,並透過發散各種虛假訊息使我們對於當前社群網路狀態產
    生錯誤的認知。如果他們能使社群網路偵測的結果變差,就有更高的機會實現
    某些目標。儘管當前存在各種攻擊方法,但我們注意到大多數方法存在某些缺
    失。首先,他們在開發攻擊方法時經常忽視了潛在的社群網路結構。其次,他
    們的攻擊策略往往具有有限的應用範圍。為了解決這些問題,我們提出了一個
    新的度量標準,稱為θ-trio。在這篇論文中,我們首先分析與驗證θ-trio 在攻擊
    社群網絡偵測任務中較其他度量標準較為有效。接著我們基於θ-trio 提出了一種
    可以有效地干擾社群網路偵測的演算法,稱為”θ-Trio Minimization Via Adding
    Edge (θMAE)”。在實驗中,我們可以看到我們的方法比其他現有的方法更為高
    效。


    In recent years, there has been a significant discussion about research related to undermining social network structures. This encompasses areas of widespread importance and application, including community network detection, anomaly detection, and graph analysis. Additionally, some individuals are attempting to employ machine learning or algorithm-based methods to attack these tasks. They
    may target datasets, algorithms, or machine learning models, and design corresponding algorithms to reduce the target’s performance. Attacking community network detection is one of the most popular tasks in this context. For instance, individuals may create fake accounts and impersonate members of specific communities, disseminating false information to create misleading perceptions of the current state of social network connections. If they can degrade the results of
    community detection, they have a higher chance of achieving certain objectives. Despite the various existing attack methods, most of them exhibit certain deficiencies. Firstly, they often disregard the underlying network structures of the community network when developing their attack methods. Secondly, their attack strategies tend to have limited applicability. To address these issues, we propose a novel metric called θ-trio. In this paper, we analyze and validate the effectiveness of θ-trio in undermining community detection tasks compared to other metrics. We propose an algorithm based on θ-trio called ”θ-Trio Minimization Via Adding Edge (θMAE). In our experiments, we can observe that our method is more efficient than other existing approaches.

    1. Introduction 1 2. Related works 5 3. Preliminaries 9 4. Methodology 15 5. Experiment 19 6. Conclusion 26

    1. Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008(10), 2008.
    2. Chen Chen, Qiuyu Zhu, Renjie Sun, Xiaoyang Wang, and Yanping Wu.
    Edge manipulation approaches for k-core minimization: Metrics and analytics. IEEE Transactions on Knowledge and Data Engineering, 35(1), 2023.
    3. Cong Chen, Zhongyuan Jiang, and Jianfeng Ma. Privacy protection for
    marginal-sensitive community individuals against adversarial community detection attacks. IEEE Transactions on Computational Social Systems, 2022.
    4. Jinyin Chen, Lihong Chen, Yixian Chen, Minghao Zhao, Shanqing Yu,
    Qi Xuan, and Xiaoniu Yang. Ga-based q-attack on community detection.
    IEEE Transactions on Computational Social Systems, 6(3):491–503, 2019.
    5. Jinyin Chen, Yixian Chen, Lihong Chen, Minghao Zhao, and Qi Xuan. Multiscale evolutionary perturbation attack on community detection. IEEE Transactions on Computational Social Systems, 8(1), 2021
    6. Xianyu Chen, Zhongyuan Jiang, Hui Li, Jianfeng Ma, and Philip S. Yu. Community hiding by link perturbation in social networks. IEEE Transactions on Computational Social Systems, 8(3), 2021.
    7. Enyan Dai, Minhua Lin, Xiang Zhang, and Suhang Wang. Unnoticeable
    backdoor attacks on graph neural networks. In International World Wide
    Web Conference, New York, NY, USA, 2023. Association for Computing Machinery.
    8. Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack on graph structured data. In International conference on machine learning, 2018.
    9. Valeria Fionda and Giuseppe Pirro. Community deception or: How to stop fearing community detection algorithms. IEEE Transactions on Knowledge and Data Engineering, 30(4):660–673, 2017.
    10. Yu Hou, Cong Tran, and Won-Yong Shin. Meta-code: Community detection via exploratory learning in topologically unknown networks. In Conference on Information and Knowledge Management, New York, NY, USA, 2022. Association for Computing Machinery.
    11. Jia Li, Honglei Zhang, Zhichao Han, Yu Rong, Hong Cheng, and Junzhou Huang. Adversarial attack on community detection by hiding individuals. In International World Wide Web Conference, New York, NY, USA, 2020. Association for Computing Machinery.
    12. Kuan Li, Yang Liu, Xiang Ao, and Qing He. Revisiting graph adversarial attack and defense from a data distribution perspective. In International Conference on Learning Representations, 2023.
    13. Ling Li, Yuhai Zhao, Siqiang Luo, Guoren Wang, and Zhengkui Wang. Efficient community search in edge-attributed graphs. IEEE Transactions on Knowledge and Data Engineering, 2023.
    14. Pei-Zhen Li, Ling Huang, Chang-Dong Wang, and Jian-Huang Lai. Edmot: An edge enhancement approach for motif-aware community detection. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 2019. Association for Computing Machinery.
    15. Dong Liu, Guoliang Yang, Yanwei Wang, Hu Jin, and Enhong Chen. How to protect ourselves from overlapping community detection in social networks. IEEE Transactions on Big Data, 8(4), 2022.
    16. Kaixin Liu, Sibo Wang, Yong Zhang, and Chunxiao Xing. An efficient algorithm for the anchored k-core budget minimization problem. In IEEE International Conference on Data Engineering. IEEE, 2021.
    17. Felix Mujkanovic, Simon Geisler, Stephan G¨unnemann, and Aleksandar Bojchevski. Are defenses for graph neural networks robust? In Conference on Neural Information Processing Systems, 2022.
    18. Ashwin Paranjape, Austin R Benson, and Jure Leskovec. Motifs in temporal networks. In Proceedings of the tenth ACM international conference on web search and data mining, pages 601–610, 2017.
    19. Namyong Park, Ryan Rossi, Eunyee Koh, Iftikhar Ahamath Burhanuddin, Sungchul Kim, Fan Du, Nesreen Ahmed, and Christos Faloutsos. Cgc: Contrastive graph clustering for community detection and tracking. In International World Wide Web Conference, New York, NY, USA, 2022. Association for Computing Machinery.
    20. Arnau Prat-P´erez, David Dominguez-Sal, and Josep-Lluis Larriba-Pey. High quality, scalable and parallel community detection for large real graphs. In Proceedings of the 23rd international conference on World wide web, pages 225–236, 2014.
    21. Kartik Sharma, Iqra Altaf Gillani, Sourav Medya, Sayan Ranu, and Amitabha Bagchi. Balance maximization in signed networks via edge deletions. In ACM International Conference on Web Search and Data Mining, New York, NY, USA, 2021. Association for Computing Machinery.
    22. Xin Sun, Xin Huang, Zitan Sun, and Di Jin. Budget-constrained truss maximization over large graphs: A component-based approach. In Conference on Information and Knowledge Management, New York, NY, USA, 2021. Association for Computing Machinery.
    23. Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. Community preserving network embedding. In Proceedings of the AAAI conference on artificial intelligence, volume 31, 2017.
    24. Yuyao Wang, Jie Cao, Zhan Bu, Jia Wu, and Youquan Wang. Dual structural consistency preserving community detection on social networks. 2023.
    25. Zhen Wang, Chunyu Wang, Xianghua Li, Chao Gao, Xuelong Li, and Junyou Zhu. Evolutionary markov dynamics for network community detection. IEEE Transactions on Knowledge and Data Engineering, 34(3), 2022.
    26. Marcin Waniek, Tomasz Michalak, and Talal Rahwan. Hiding in multilayer networks. In The Association for the Advancement of Artificial Intelligence, volume 34, 2020.
    27. Marcin Waniek, Tomasz P Michalak, Michael J Wooldridge, and Talal Rahwan. Hiding individuals and communities in a social network. Nature Human Behaviour, 2(2), 2018.
    28. Marcin Waniek, Jan Wo´znica, Kai Zhou, Yevgeniy Vorobeychik, Tomasz P Michalak, and Talal Rahwan. Hiding from centrality measures: A stackelberg 30 game perspective. IEEE Transactions on Knowledge and Data Engineering, 2023.
    29. Marcin Waniek, Jan Wo´znica, Kai Zhou, Yevgeniy Vorobeychik, Talal Rahwan, and Tomasz P. Michalak. Strategic evasion of centrality measures. In The International Conference on Autonomous Agents and Multiagent Systems, Richland, SC, 2021. International Foundation for Autonomous Agents and Multiagent Systems.
    30. Mengmei Zhang, Xiao Wang, Chuan Shi, Lingjuan Lyu, Tianchi Yang, and Junping Du. Minimum topology attacks for graph neural networks. In International World Wide Web Conference, New York, NY, USA, 2023. Association for Computing Machinery.
    31. Yao Zhang, Yun Xiong, Yun Ye, Tengfei Liu, Weiqiang Wang, Yangyong Zhu, and Philip S. Yu. Seal: Learning heuristics for community detection with generative adversarial networks. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 2020. Association for Computing Machinery.
    32. Weijie Zhu, Chen Chen, Xiaoyang Wang, and Xuemin Lin. K-core minimization: An edge manipulation approach. CIKM ’18, page 1667–1670, New York, NY, USA, 2018. Association for Computing Machinery.

    QR CODE