簡易檢索 / 詳目顯示

研究生: 陳澤睿
Chen, Tse-Jui
論文名稱: 利用脈衝式電化學沉積法製備釕銥二元合金觸媒並應用於質子交換膜水電解器之陽極
Preparation of Ruthenium- Iridium Binary Catalyst for Oxygen Evolution Reaction at the Anode of PEMWE by the Pulsed Co-Electrodeposition Technique
指導教授: 葉宗洸
Yeh, Tsung-Kuang
口試委員: 陳燦耀
Chen, Tsan-Yao
王丞浩
Wang, Chen-Hao
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 85
中文關鍵詞: 質子交換膜水電解器二元觸媒電化學沉積法產氫析氧反應
外文關鍵詞: Proton Exchange Membrane Water Electrolysis, Ruthenium, Iridium, Binary Catalyst, Electrodeposition, Hydrogen Production, Oxygen Evolution Reaction (OER)
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用脈衝式電化學共沉積法(Pulsed Co-electrodeposition)製備釕銥二元合金觸媒(Ruthenium-Iridium Binary Catalyst),並將其運用於質子交換膜水電解器(Proton Exchange Membrane Water Electrolyzer, PEMWE)的陽極觸媒。利用三氯化釕(Ruthenium(Ⅲ) Chloride Hydrate, RuCl3•3H2O)和三氯化銥(Iridium(Ⅲ) Chloride Hydrate, IrCl3•3H2O)作為前驅物,氯化鉀(Potassium Chloride, KCl)做為輔助電解質以提升電解液之導電度,使溶液中的釕離子和銥離子共同還原於觸媒載體上形成二元觸媒。其中,本研究中選用碳材料做為觸媒載體,包含奈米碳管(Carbon Nanotubes)、有/無微孔層之碳布(Carbon Cloth)。
    本實驗的製備條件依序以下面五種操控變因來進行實驗:(1) 不同電鍍電位(2)不同單位脈衝中Ton長度 (3)不同電鍍之質傳速率 (4)不同電鍍總時長 (5)不同電鍍後退火溫度,並從中選擇物理、化學以及電化學特性最佳的釕銥觸媒製程參數作為PEMWE之陽極觸媒使用。
    效能測試分為兩部分,首先利用場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FEG-SEM)和能量散射光譜(Energy dispersive X-ray Spectroscopy, EDS)觀察釕銥觸媒於觸媒載體上的形貌以及元素分布。並且利用X光繞射儀(X-ray Diffractometer, XRD)和X射線光電子能譜(X-ray Photon Spectroscopy, XPS)來分析觸媒中釕和銥元素的晶體結構以及電子價數。最後利用感應耦合電漿質譜分析儀(Inductivity Coupled Plasma-Mass Spectrometer, ICPMS)來分析自製觸媒中的貴重金屬含量。電化學方面使用0.5 M硫酸溶液進行線性掃描伏安法(Linear Sweep Voltammetry, LSV)作為觸媒產氧效能的初步測試與比較,接著利用循環伏安法(Cyclic Voltammetry, CV)來測量觸媒的電化學活性面積(Electrochemical Surface Area, ECSA)、並且以電化學阻抗圖譜(Electrochemical Impedance Spectroscopy, EIS)來分析觸媒的反應阻抗。最後經由PEMWE的全電池測試(Full cell test)來模擬水電解產氫及產氧的實際情形。
    經本研究發現,調整電鍍電位和電鍍總時長能直接改變釕銥觸媒的形貌和三維結構。調整電鍍時溶液的攪拌轉速以及單位脈衝的結構則能夠改善電鍍時的陽離子質傳情況,進而影響觸媒形貌以及水電解產氫效率。本研究發現以脈衝式電鍍觸媒於奈米碳管載體,並且調整適當的電鍍電位、電鍍總時長以及電鍍中的質傳速率,能夠製備出高度的三維結構以及均勻分布的釕銥合金觸媒。本研究也發現,釕銥二元觸媒比起純釕觸媒擁有更高的觸媒穩定度,證實銥元素的摻雜會對釕觸媒的晶格產生應力,進而提升原先釕觸媒的觸媒穩定度和觸媒活性。


    This study performs pulsed co-electrodeposition to prepare ruthenium-iridium binary catalysts and applied them as anode catalysts in the Proton Exchange Membrane Water Electrolyzer (PEMWE). Ruthenium(Ⅲ) Chloride Hydrate (RuCl3•3H2O) and Iridium(Ⅲ) Chloride Hydrate (IrCl3•3H2O) were employed as precursors, with Potassium Chloride (KCl) serving as the supporting electrolyte to enhance the conductivity of the electrolyte solution. The ruthenium and iridium ions were co-deposited on the catalyst support to form a binary catalyst. In this study, carbon materials are selected as catalyst supports, including carbon nanotubes and carbon cloth with/without a microporous layer.
    The experimental conditions were systematically varied in five variables: (1) Different electrodeposition potentials, (2) Different Ton lengths for a single pulse, (3) Different mass transport rates during electrodeposition, (4) Different total electrodeposition durations, and (5) Different post-deposition annealing temperatures. The optimal ruthenium-iridium catalyst preparation parameters, based on the physical, chemical, and electrochemical characteristics, were selected for use as anode catalysts in PEMWE.
    Performance testing comprised two parts: firstly, morphological observation and elemental distribution of the ruthenium-iridium catalyst on the catalyst support were conducted using Field Emission Scanning Electron Microscopy (FEG-SEM) and Energy Dispersive X-ray Spectroscopy (EDS). Secondly, the crystal structure of ruthenium and iridium elements in the catalyst and their electron valence were analyzed using X-ray Diffractometer (XRD) and X-ray Photoelectron Spectroscopy (XPS). Inductively Coupled Plasma Mass Spectroscopy (ICPMS) was then performed to analyze the noble metal loading and molar ratio of the homemade catalysts. Electrochemical analysis involved using 0.5 M sulfuric acid solution for Linear sweep voltammetry (LSV) for preliminary testing and comparison of the catalyst's oxygen production efficiency. Next, cyclic voltammetry (CV) is used to measure the electrochemical surface area (ECSA) of the catalyst, and electrochemical impedance spectroscopy (EIS) is employed to analyze the reaction impedance of the homemade catalysts. Finally, full cell tests of the PEMWE were conducted to simulate actual hydrogen and oxygen production through water electrolysis.
    The study found that adjusting the electrodeposition potential and total duration directly affected the morphology and three-dimensional structure of the ruthenium-iridium catalyst. Adjusting the agitation of the solution during electrodeposition and the structure of the unit pulse improved the cation mass transfer during electrodeposition, thereby influencing the catalyst morphology and hydrogen production efficiency in water electrolysis. It was discovered that using pulsed electrodeposition of catalysts on carbon nanotube supports, along with appropriate adjustments to the electrodeposition potential, total duration, and mass transport rate during electrodeposition, enabled the preparation of highly three-dimensional structures and uniformly distributed ruthenium-iridium alloy catalysts. The study also found that ruthenium-iridium binary catalysts exhibited higher catalytic stability compared to pure ruthenium catalysts, confirming that the doping of iridium elements induced lattice stress in the ruthenium catalyst, thereby enhancing the catalyst's durability.

    摘要 i Abstract iii 目錄 v 圖目錄 viii 表目錄 xi 第 1 章 緒論 1 1.1研究背景 1 1.2研究動機 3 第 2 章 基本原理與文獻回顧 5 2.1 氫氣的生產方式 5 2.2 水電解系統(Water Electrolysis)的發展概況 9 2.3 質子交換膜水電解系統基本構造 17 2.3.1質子交換膜(Proton exchange membrane,PEM) 18 2.3.2觸媒層(Catalyst Layer,CL) 19 2.3.3氣體擴散層(Gas diffusion layer,GDL) 20 2.3.3.1 奈米碳管(Carbon Nano-tubes, CNT) 21 2.3.4雙極流道板(Bipolar plates) 22 2.4 觸媒製備方法 22 2.4.1電化學沉積法 (Electrodeposition) 23 2.4.1.1 恆定電位電鍍法(Potentiostatic Electrodeposition, PED) 23 2.4.1.2 恆定電流電鍍法(Galvanostatic Electrodeposition, GED) 26 2.4.1.3 脈衝式電鍍法(Pulsed Electrodeposition, PED) 28 2.5 膜電極組製備與電池組裝 31 第 3 章 實驗方法 34 3.1實驗流程 34 3.2實驗藥品與設備 35 3.2.1實驗藥品與材料 35 3.2.2實驗氣體 35 3.2.3實驗設備 35 3.2.4分析儀器 36 3.3電化學實驗裝置設計 36 3.4觸媒載體製備與前處理 37 3.4.1 奈米碳管製備程序 38 3.4.2 親水處理 39 3.5觸媒製備 40 3.5.1自製陽極觸媒 40 3.5.2製備陰極觸媒 41 3.6觸媒成分及其型態分析 42 3.6.1 觸媒表面形貌分析 42 3.6.2觸媒結晶型態與化學結構分析 43 3.6.3觸媒之貴重金屬負載量量測 45 3.7觸媒催化性分析(LSV, CV) 45 3.8電化學阻抗頻譜分析 47 3.9水電解器全電池測試 48 3.9.1 陽極觸媒之液態Nafion®佈植 48 3.9.2 膜電極組製備與單電池系統組裝 49 3.9.3 水電解器之極化掃描測試 50 3.9.4 水電解器之耐久度測試 51 第 4 章 結果與討論 52 4.1 實驗1:不同電鍍電位之比較 52 4.2 實驗2:調整電鍍參數並優化觸媒分布性 55 4.3 實驗3:奈米碳管作為觸媒載體來製備釕銥觸媒 58 4.4 實驗4:脈衝總數對於觸媒形貌和催化性的影響 62 4.5 自製釕銥二元觸媒的物化性質和優勢 65 4.6 實驗5:利用高溫熱處理進行自製觸媒氧化程序 68 第 5 章 結論 75 參考文獻 77

    [1] 淨零12項關鍵戰略行動計畫(草案)關鍵戰略2-氫能。經濟部能源局,2022年3月。
    [2] S. Shiva Kumar, V. Himabindu. “Hydrogen production by PEM water electrolysis – A review”, Materials Science for Energy Technologies, 2, 2019
    [3] Cecil Felix, Bernard J. Bladergroen, Vladimir Linkov, Bruno G. Pollet, Sivakumar Pasupathi. “Ex-Situ Electrochemical Characterization of IrO2 Synthesized by a Modified Adams Fusion Method for the Oxygen Evolution Reaction. Electrocatalysts in Hydrogen Storage and Fuel Cells”, 2019, 9(4), 318
    [4] T.-J. Chen, T.-K. Yeh, and M.-Y. Wang. “Preparation of ruthenium oxide catalyst for oxygen evolution reaction in HT-PAWE by pulsed electrodeposition”, International Journal of Hydrogen Energy, 2023, Volume 52, Part B, Pages 917-927.
    [5] Muhammad Younas, Sumeer Shafique, Ainy Hafeez, Fahad Javed, Fahad Rehman. “An Overview of Hydrogen Production: Current Status, Potential, and Challenges”, Fuel, Volume 316, 15 May 2022, 123317
    [6] Pedro J. Megia, Arturo J. Vizcaino, Jose A. Calles, and Alicia Carrero. “Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review”, Energy Fuels 2021, 35, 16403-16415
    [7] M. H. Miles and M. A. Thomason. “Periodic Variations of Overvoltages for Water Electrolysis in Acid Solutions from Cyclic Voltammetric Studies”, Journal of The Electrochemical Society, vol. 123, no. 10, pp. 1459-1461, 1976.
    [8] Anže Zupanc, Joseph Install, Marjan Jereb, Timo Repo. “Sustainable and Selective Modern Methods of Noble Metal Recycling”, Angewandte Chemie International Edition, 2022, e202214453
    [9] Qi Feng, Xiao-Zi Yuan, Gaoyang Liu, Bing Wei, Zhen Zhang, Hui Li, Haijiang Wang. “A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies”, Journal of Power Sources, Volume 366, 2017, Pages 33-55
    [10] Ashkan Makhsoos, Mohsen Kandidayeni, Bruno G. Pollet, Loic Boulon. “A perspective on increasing the efficiency of the proton exchange membrane water electrolyzers- a review”, International Journal of Hydrogen Energy, 48(2023), 15341-15370
    [11] Xiaolong Chen, Guolong Huang, Jiade Wang. “Electrochemical Reduction / Oxidation in the Treatment of Heavy Metal Wastewater”, Journal of Metallurgical Engineering, Volume 2 Issue 4, 2013
    [12] Chuyen Van Pham, Daniel Escalera-Lopez, Karl Mayrhofer, Serhiy Cherevko, Simon Thiele. “Essentials of High Performance Water Electrolyzers – From Catalyst Layer Materials to Electrode Engineering”, Advanced Energy Materials 2021, 11, 2101998.
    [13] Shaoxiong Li, Sheng Zhao, Feng Hu, Linlin Li, Jianwei Ren, Lifang Jiao, Seeram Ramakrishna, Shengjie Peng. “Exploring the potential Ru-based catalysts for commercial-scale polymer electrolyte membrane water electrolysis: A systematic review”, Progress in Materials Science, Volume 145, October 2024, 101294.
    [14] Fabiola Pantò, Stefania Siracusano, Nicola Briguglio, Antonino Salvatore Aricò. “Durability of a recombination catalyst-based membrane-electrode assembly for electrolysis operation at high current density”, Applied Energy 279 (2020) 115809.
    [15] Huaneng Su, Vladimir Linkov, Bernard Jan Bladergroen. “Membrane electrode assemblies with low noble metal loadings for hydrogen production from solid polymer electrolyte water electrolysis”, International Journal of Hydrogen Energy, Volume 38, Issue 23, 6 August 2013, Pages 9601-9608.
    [16] Zhi Liang Zhao, Qi Wang, Xiang Huang, Qi Feng, Shuang Gu, Zhen Zhang, Hu Xu, Lin Zeng, Meng Gu, Hui Li. “Boosting Oxygen Evolution Reaction Using Defect-rich Ultra-Thin Ruthenium Oxide Nanosheets in Acidic Media”, Energy & Environmental Science, 2020, 13, 5143-5151.
    [17] Cehuang Fu, Thomas O’Carroll, Shuiyun Shen, Liuxuan Luo, Junliang Zhang, Hui Xu, Gang Wu. “Metallic-Ir-based anode catalysts in PEM water electrolyzers: Achievements, challenges, and perspectives”, Current Opinion in Electrochemistry, vol. 38, 2023, 101227.
    [18] Iakovos Yakoumis, Marianna Panou, Anastasia Maria Moschovi, Dimitris Panias. “Recovery of platinum group metals from spent automotive catalysts: A review”, Cleaner Engineering and Technology, vol. 3, 2021, 100112.
    [19] J.M. Sieben, E. Morallón, D. Cazorla-Amorós. “Flexible ruthenium oxide-activated carbon cloth composites prepared by simple electrodeposition methods”, Energy, Volume 58, 2013, Pages 519-526.
    [20] Marcelo Carmo, David L.Fritz, Jürgen Mergel, Detlef Stolten, “A comprehensive review on PEM water electrolysis”, International Journal of Hydrogen Energy, Volume 38, Issue 12, 2013, Pages 4901-4934.
    [21] Dr. Ioannis Katsounaros, Dr. Serhiy Cherevko, Dr. Aleksandar R. Zeradjanin, Dr. Karl J.J. Mayrhofer, “Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion”, A Journal of the German Chemical Society, Volume 53, Issue 1, 2014, Pages 102-121.
    [22] Marian Chatenet, Bruno G. Pollet, Dario R. Dekel, Fabio Dionigi, Jonathan Deseure, Pierre Millet, Richard D. Braatz, Martin Z. Bazant, Michael Eikerling, Iain Staffell, Paul Balcombe, Yang Shao-Horn and Helmut Schafer. “Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments”, Chem. Soc. Rev., 2022, 51, 4583
    [23] Yiyi Wu, Muhammad Tariq, Waqas Qamar Zaman, Wei Sun, Zhenhua Zhou, and Ji Yang. “Ni-Co doped RuO2 with Outstanding Oxygen Evolution Reaction Performance”, ACS Appl. Energy Mater. 2019, 2, 4105-4110
    [24] Taegyeom Lee, Yoonsu Park, Hoyoung Kim, Yun-Kun Hong, Eunseo Hwang, Minyoung Kim, Soo-Kil Kim, Don-Hyung Ha. “Restructured Co-Ru alloys via electrodeposition for efficient hydrogen production in proton exchange membrane water electrolyzers”, International Journal of Energy Research, 2022; 46: 7975-7987.
    [25] Serhiv Cherevko, Simon Geiger, Olga Kasian, Nadiia Kulyk, Jan-Philipp Grote, Alan Savan, Buddha Ratna Shrestha, Sergiy Merzlikin, Benjamin Breitbach, Alfred Ludwig, Karl J.J. Mayrhofer. “Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability”, Catalysis Today. Volume 262, 15 March 2016, Pages 170-180
    [26] M. Carmo, D. L. Fritz, J. Mergel, and D. Stolten. “A comphrehensive review on PEM water electrolysis”, International Journal of Hydrogen Energy, volume 38, issue 12, 2013, Pages 4901-4934.
    [27] S. Themsirimongkon, T. Sarakonsri, S. Lapanantnoppakhun, J. Jakmunee, S. Saipanya. “Carbon nanotube-supported Pt-alloyed metal anode catalysts for methanol and ethanol oxidation”, International Journal of Hydrogen Energy 2019, 44(58):30719-30731.
    [28] K. Novikova, A. Kuriganova, I. Leontyev, E. Gerasimova, O. Maslova, A. Rakhmatullin, N. Smirnova, Y. Dobrovolsky. “Influence of carbon support on catalytic layer performance of proton exchange membrane fuel cells”, Electrocatalysis 2018, 9(1):22-30.
    [29] F. Mirzaei, M. J. Parnian, S. Rowshanzamir. “Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon exchange membrane fuel cell”, Energy 2017, 138:696-705.
    [30] Hongchao Ma, Changpeng Liu, Jianhui Liao, Xingzhong Xue, Wei Xing, “Study of ruthenium oxide catalyst for electrocatalytic performance in oxygen evolution”, Journal of Molecular Catalysis A: Chemical, Volume 247, Issue 1-2, 2006, Pages 7-13.
    [31] Varagunapandiyan Natarajan, Suddhasatwa, Keith Scott, “Effect of treatment temperature on the performance of RuO2 anode electrocatalyst for high temperature proton exchange membrane water electrolysers”, International Journal of Hydrogen Energy, Volume 38, Issue 36, 2013, Pages 16623-16630.
    [32] 李弘傑。「以陽極、陰極與循環伏安沉積法在RuCl3水溶液中沉積釕氧化物薄膜」。碩士論文,國立高雄應用科技大學,2006年6月
    [33] Zejie Zhang, Yihui Wu, Deping Zhang. “Potentiostatic electrodeposition of cost-effective and efficient Ni-Fe electrocatalysts on Ni foam for the alkaline hydrogen evolution reaction”, International Journal of Hydrogen Energy, vol. 47, issue 3, 2022, pp. 1425-1434.
    [34] Yuhang Wang, Guoxin Zhang, Wenwen Xu, Prof. Pengbo Wan, Zhiyi Lu, Yaping Li, Prof. Xiaoming Sun. “A 3D Nanoporous Ni-Mo Electrocatalyst with Negligible Overpotential for Alkaline Hydrogen Evolution”, ChemElectroChem, 2014, vol. 1, issue 7, pp. 1138-1144.
    [35] Akrama Mahmoud, Jeremy Olivier, Jean Vaxelaire, Andrew F.A. Hoadley. “Electric field: A historical review of its application and contributions in wastewater sludge dewatering”, Water Research 44, 2010, 2381-2407.
    [36] Ali Ourari, Ridha Zerdoumi, Ramiro Ruiz-Rosas, Emilia Morallon. “Synthesis and Catalytic Properties of Modified Electrodes by Pulsed Electrodeposition of Pt/PANI Nanocomposite”, Materials 2019, 12(5), 723.
    [37] Nguyen Sy Pham, Phuong Thi Que Phan, Vinh Xuan Le. “RETRACTED ARTICLE: Porous NiO via pulsed electrodeposition towards enhanced electrochromic properties”, Journal of Applied Electrochemistry, vol 52, 2022, 1343-1351
    [38] Hyanjoo Park, Seunghoe Choe, Hoyoung Kim, Dong-Kwon Kim, Geon Hee Cho, Yoon Su Park, Jong Hyun Jang, Don-Hyung Ha, Sang Hyun Ahn, Soo-Kil Kim, “Direct fabrication of gas diffusion cathode by pulse electrodeposition for proton exchange membrane water electrolysis”, Applied Surface Science, Volume 444, 2018, Pages 303-311
    [39] Xingxing Wang, Yujie Zhang, Yu Zhu, Shuaishuai Lv, Hongjun Ni, Yelin Deng, Yinnan Yuan. “Effect of Different Hot-Pressing Pressure and Temperature on the Performance of Titanium Mesh-Based MEA for DMFC”, Membranes 2022, 12, 431.
    [40] Ziyao Wu, Pucheng Pei, Huachi Xu, Xiaoning Jia, Peng Ren, Bozheng Wang. “Study on the effect of membrane electrode assembly parameters on polymer electrolyte membrane fuel cell performance by galvanostatic charging method”, Applied Energy 251 (2019) 113320.
    [41] Hoyoung Kim, Hyanjoo Park, Hotae Bang, Soo-Kil Kim, “Electrodeposition- fabricated catalysts for polymer electrolyte water electrolysis”, Korean J.Chem.Eng, 37(8), 2020, pages 1275-1294.
    [42] Hansaem Jang, Sunki Chung, Jaeyoung Lee. “In situ demonstration of anodic interface degradation during water electrolysis: Corrosion and passivation”, Electrochimica Acta 365 (2021) 137276
    [43] 吳維陞。「電沈積高活性鉑觸媒於奈米碳管載體應用於質子交換膜燃料電池電極之製程優化」。碩士,國立清華大學工程與系統科學系,2020。
    [44] 黃謙煜。「脈衝式電鍍銥觸媒於奈米碳管載體應用於質子交換膜電解器之陽極端」。碩士,國立清華大學工程與系統科學系,2023。
    [45] Asif Ali, Ning Zhang, Rafael M. Santos. “Mineral Characterization Using Scanning Electron Microscopy (SEM): A Review of the Fundamentals, Advancements, and Research Directions”, Applied Science 2023, 13, 12600
    [46] Hayat Khan, Aditya S. Yerramilli, Adrien D’Oliveira, Terry L. Alford, Daria C. Boffito. “Experimental methods in chemical engineering: X-ray diffraction spectroscopy-XRD”, The Canadian Journal of Chemical Engineering, 2020, 98(6), pp. 1255-1266
    [47] C.J. Corcoran, H. Tavassol, M.A. Rigsby, P.S. Bagus, A. Wieckowski. “Application of XPS to study electrocatalysts for fuel cells”, Journal of Power Sources 195 (2010) 7856-7879
    [48] P. Moçotéguy, B. Ludwig, D. Beretta, T. Pedersen. “Study of the impact of water management on the performance of PEMFC commercial stacks by impedance spectroscopy”, International Journal of Hydrogen Energy, volume 45, issue 33, 24 June 2020, Pages 16724-16737.
    [49] 張亘佑。「利用恆電位沉積法製備高活性鉑觸媒應用於磷酸燃料電池電極之製程優化」。碩士,國立清華大學工程與系統科學系,2021。
    [50] W. Wang, K. Li, L. Ding, S. Yu, Z. Xie, D. A. Cullen, H. Yu, G. Bender, Z. Kang, J. A. Wrubel, Z. Ma, C. B. Capuano, A. Keane, K. Ayers, and F. Y. Zhang. “Exploring the impacts of conditioning on proton exchange membrane electrolyzers by in situ visualization and electrochemistry characterization”, ACS Applied Materials & Interfaces, vol. 57, pp. 234-239, 2013.
    [51] Eveline Kuhnert, Viktor Hacker, Merit Bodner. “A Review of Accelerated Stress Tests for Enhancing MEA Durability in PEM Water Electrolysis Cells”, International Journal of Energy Research, 2023, pp. 1-23.
    [52] Daniel K. Oppedisano, Lathe A. Jones, Tabea Junk, Suresh K. Bhargava, “Ruthenium Electrodeposition from Aqueous Solution at High Cathodic Overpotential”, Journal of the Electrochemical Society, Volume 161, Number 10, 2014, 489-494.
    [53] D. S. Falcao and A. M. F. R. Pinto. “A review on PEM electrolyzer modelling: Guidelines for beginners”, Journal of Cleaner Production, vol. 261, 2020, p. 121-184.
    [54] Honggang Zhang, Nan Zhang, Fengzhou Fang. “Study of ion transportation and electrodeposition under hybrid agitation for electroforming of variable aspect ratios micro structures”, Precision Engineering, 2021, vol. 72, pp. 122-143.
    [55] Jill Chastain, John F. Moulder, William F. Stickle, Peter E. Sobol, Kenneth D. Bomben. “Handbook of X-ray Photoelectron Spectroscopy A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data”, 1995, Perkin-Elmer Corporation.
    [56] Verena Pfeifer, Travis E. Jones, Juan J. Velasco Velez, Cyriac Massue, Rose Arrigo, Detre Teschner, Frank Girgsdies, Michael Scherzer, Mark T. Greiner, Jasmin Allan, Maike Hahagen, Gisela Weinberg, Simone Piccinin, Michael Havecker, Axel Knop-Gericke, Robert Schlogl. “The electronic structure of iridium and its oxides”, Surface and Interface Analysis, vol 48, pp.261-273
    [57] Nisha B., Vidyalakshmi Y., Sirajunnisa Abdul Razack. “Enhanced formation of ruthenium oxide nanoparticles through green synthesis for highly efficient supercapacitor applications”, Advanced Powder Technology, vol. 31, pp.1001-1006.
    [58] Lukasz Sztaberek, Hannah Mabey, William Beatrez, Christopher Lore, Alexander C. Santulli, Christopher Koenigsmann. “Sol-Gel Synthesis of Ruthenium Oxide Nanowires To Enhance Methanol Oxidation in Supported Platinum Nanoparticle Catalysts”, ACS Omega 2019, 4, 10, 14226-14233.
    [59] Zhen-Yu Wu, Feng-Yang Chen, Boyang Li, Shen-Wei Yu, Y. Zou Finfrock, Debora Motta Meira, Qiang-Qiang Yan, Peng Zhu, Ming-Xi Chen, Tian-Wei Song, Zhouyang Yin, Hai-Wei Liang, Sen Zhang, Guofeng Wang, Haotian Wang. “Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis”, Nature Materials 22, 2023, 100–108.
    [60] Vishal Jose, Viet-Hung Do, P Prabhu, Chun-Kuo Peng, San-Yuan Chen, Yingtang Zhou, Yan-Gu Lin, Jong-Min Lee. “Activating Amorphous Ru Metallenes Through Co Integration for Enhanced Water Electrolysis. Advanced Energy Materials, v13, issue 28, 2023, 2301119
    [61] Marco Bellini, Jonas Bosken, Michael Worle, Debora Thony, Juan Jose Gamboa-Carballo, Frank Krumeich, Francesco Bartoli, Hamish A. Miller, Lorenzo Poggini, Werner Oberhauser, Alessandro Lavacchi, Hansjorg Grutzmacher, Francesco Vizza. “Remarkable stability of a molecular ruthenium complex in PEM water electrolysis”, Chem. Sci., 2022, 13, 3748-3760

    QR CODE