研究生: |
蔡兆展 Tsai Chao-Chan |
---|---|
論文名稱: |
新型沸石MCM-22的合成與催化反應研究 Synthesis and Catalytic Reactions of MCM-22 zeolite |
指導教授: |
王奕凱
Wang I-kai |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | MCM-22 、合成 、環己酮肟分子進行的貝克曼重組反應 、九碳芳香烴轉化反應 |
外文關鍵詞: | MCM-22, Synthesis, hydrocarbon transformation of trimethylbenzene |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
MCM-22為Mobil公司於1990年所發現的新型沸石,其具有特殊的孔洞結構,含二組二維且獨立的10圓環孔道系統,其中一組10圓環孔道以正弦曲狀貫通整個骨架結構,而另一組孔道中則包含12圓環孔洞(7.1Ǻ*7.1Ǻ*18.2Ǻ)。更特別的是在其外表面中含12圓環的半開口式袋狀孔洞,此結構使其具有非常大的外部表面積,且由於外部表面積的活性基較不具擴散阻力,將可顯現出較大反應活性。
本研究中以下列合成條件(SiO2/Al2O3 = 25; OH-/ SiO2 = 0.1; Na+/SiO2 = 0.2; HMI/SiO2 = 0.35; H2O/SiO2 = 25)成功合成出MCM-22沸石。此合成之沸石經SEM測定其形狀為圓薄片狀(平均直徑< 1 □m; 厚度< 0.1□m),表面積為510 m2/g,而經NH3-TPD測定其酸性強度較ZSM-5和□沸石為弱,然而當調整SiO2/Al2O3至15和35時,則會得到ZSM-35及少量的ZSM-5沸石。由於環己酮肟和九碳芳香烴的分子大小約為0.73 和0.84 nm,因此探究其在MCM-22沸石之催化反應特性。
在以環己酮肟分子進行的貝克曼重組反應研究中,吾人探討不同反應操作條件(反應溫度、載流氣體、反應物濃度、溶劑和WHSV)對穩定性及產物選擇率的影響。環己酮肟的催化反應結果包含了環己酮肟經貝克曼重組生成己內醯胺的主要反應和具相同反應速率的己內醯胺開環反應生5-烯正六烷基亞硝酸塩及環己酮肟水解反應生成環己酮這二個具相近反應速率的副反應。各反應的相對反應速率決定了沸石的穩定時間長短和各產物的選擇率高低,此速率會因反應操作條件不同而有改變。含浸白金金屬於MCM-22和使用氫氣為載流氣體加速了5-烯正六烷基亞硝酸塩轉化的加氫反應,而由己內醯胺開環反應來補償,降低了己內醯胺的選擇率。對於H-MCM-22沸石進行此反應而言,操作在反應溫度為653 K和使用乙醇或環己酮當溶劑可明顯的改善己內醯胺的選擇率和觸媒的穩定性。比較先前使用十二圓環沸石催化此反應的文獻得知乙醇對H-MCM-22的影響行為介於十圓環和十二圓環之間。
在以九碳芳香烴分子在Pt/MCM-22上進行九碳芳香烴轉化反應,探討了不同沸石型態的雙功能觸媒、雙功能觸媒之本質(金屬含量、沸石酸性)及反應溫度對九碳芳香烴轉化反應之產物分佈的影響。九碳芳香烴的轉化反應包含了九碳芳香烴/九碳環烷烴烴之加氫/脫氫反應、九碳環烷烴之異構化與開環反應、九碳異烷烴之二次裂解反應。在反應溫度503-543 K範圍中各反應的相對速度快慢如下:氫化 > 異構化 > 開環 >> 二次裂解,且碳-碳鍵的裂解主要發生在酸性活性基上。沸石的結構及酸性活性基的量為反應的重要控制變因,相對的金屬含量則無顯著的影響。六環烷烴上之烷基位置會影響其開環反應性,1, 3, 5-TMCH會先轉化成較具反應性的1, 2, 4-TMCH再進一步進行開環反應。
The new zeolite, MCM-22, was invented in Mobil Oil Company in 1990. This zeolite has unique structure which was consisted with two two-dimensional and independent ten-member-ring (10 MR) channels. One channel is sinusoidal through the structure, and the other channel contains twelve-member-ring (12 MR) supercage (7.1Ǻ*7.1Ǻ*18.2Ǻ). Especially, this zeolite contains 12 MR pocket structure on its external surface. This special structure contributes large external surface and the active sites exhibit excellent activity due to no diffusion limitation of reactants and products.
In this work, we synthesized this new zeolite successfully under controlling conditions: SiO2/Al2O3 = 25; OH-/ SiO2 = 0.1; Na+/SiO2 = 0.2; HMI/SiO2 = 0.35; H2O/SiO2 = 25. The as-synthesized MCM-22 shows disc-like platelets with a diameter of less than 1 □m and a thickness of less than 0.1 □m. The surface area of this zeolite is 510 m2/g. Comparison the acid strength of ZEM-5 and □ zeolte, it exhibits weaker acid strength. However, we changed the SiO2/Al2O3 mole ratio from 25 to 15 and 35, another zeolites, ZSM-35 and ZSM-5, were synthesized at the same operating conditions. Owing to the molecular size of cyclohexanone oxime (0.73 nm) and trimethylbenzene (0.84 nm), the further research of these reactants over MCM-22 is explored in this work.
A comprehensive study has been made on the Beckmann rearrangement of cyclohexanone oxime (CHO oxime), catalyzed by MCM-22 under various operating conditions (temperature, carrier gas, concentration, solvent and WHSV). A reaction pathway was proposed which invokes the main rearrangement reaction of CHO oxime accompanied by two side reactions, namely ring opening reaction of ε-caprolactam to form 5-hexenenitrile (coke precursor) and hydrolysis reaction to form cyclohexanone. The relative rates of these reactions, which would change under various operating conditions, affect catalyst stability and selectivity of products. The incorporation of platinum catalyzes the hydrogenation of 5-hexenenitrile and favor ring opening, which resulted in low ε-caprolactam selectivity. It is concluded that the selectivity of ε-caprolactam and the catalytic stability of H-MCM-22 may be improved by operating at a specified reaction temperature of ca. 653 K and particularly by using cyclohexanone or ethanol as the solvent of CHO oxime feed. By comparing with existing reports for 12-MR zeolites, we conclude that the effect of ethanol solvent over H-MCM-22 behaves more like that of 10-MR zeolites.
A comprehensive study has been made on the hydrocarbon transformation of trimethylbenzene catalyzed by MCM-22 under various conditions concluding types of bifunctional catalyst, nature of bifunctional catalyst such as the amounts of metal and acidity of zeolite, and temperature etc.). The reaction pathway was proposed which invokes hydrogenation/dehydrogenation of aromatics/cyclohexane, isomerization and ring opening of C9-naphthene and secondary cracking reaction of C9-paraffins. The relative rates of these reactions decreased in the order of following: hydrogenation > isomerization > ring opening >> secondary cracking reaction under temperature range from 503 to 543 K. The C-C bond secession was the major conducted by acid sites. It is found that the alkyl position of the alkyl-benzene plays an important role on the reaction rate and product distribution during ring-opening reaction. The more reactive 1, 2, 4-TMCH, which converted from 1, 3, 5-TMCH, further proceed ring opening reaction.
第一章
1. J.N. Mcbain, "The Sorption of Gases and Vapors by Solids", Chap. 5,
George Rutledge and Sons Ltd., London (1932).
2. S.M. Yang, S.T. Wu, J. Chin. Chem. Soc., 35 (1988) 141.
3. S.G. Hedge, P. Ratnasamy, L.M. Kustov, V.B. Kazansky, Zeolites, 8 (1988) 137.
4. M.E. Davis, C. Montes, J.M. Garces, ACS symposium series, 399 (1989) 291.
5. R.B. Borade, A. Clearfield, Catal. Lett., 31 (1995) 267.
6. R. Birjega, r. Ganea, C. Nenu, Stud. Surf. Sci. Catal., 141 (2002) 151.
7. N.Y. Chen, W.E. Garwood, F.G. Dwyer, "Shape Selective Catalysis in Industrial applications", Chap. 2, Second Edit., New York.
8. J. Haggin, CEN, July 4 (1994) 23.
9. M.E. Leonowicz, J.A. Lawton, S.L. Lawton, M.K. Rubin, Science, 264 (1994) 1910.
10. A.M. Prakash,L. Kevan, J. Phys.Chem., 100 (1996) 19587.
11. S.L. Lawton, M.E. Leonowicz, R.D. Partridge, P. Chu, M.K. Rubin, Micropor. Mesopor. Mater., 23 (1998) 109.
12. U.S. Patent 5,258,565.
13. A. Corma, C. Corell, A. Martinez, J. Perezpariente, Stud. Surf. Sci.
Catal., 84 (1994) 859.
14. A. Corma, C. Corell, F. Lopis, A. Martinez, J. Perezpariente, Appl. Catal. A-Gen., 115 (1994) 121
15. S. Unverricht, S. Ernst, J.Weitk, Stud. Surf. Sci. Catal., 84 (1994) 1693.
16. R. Ravishankar, D. Bhattacharya, N.E. Jacob, S. Sivasanker, Micropor. Mat., 4 (1995) 83.
17. R. Ravishankar, T. Sen, V. Ramaswamy, H.S. Soni, S. Ganapathy, S.
Sivasanker, Stud. Surf. Sci. Catal., 84 (1994) 331.
18. H.G. Karge, S. Ernst, M.Weihe, U. Weiss, J. Weitkamp, Stud. Surf. Sci. Catal., 84 (1994) 1805.
第二章
1. I. Mochida, S. Eguchi, M. Hironaka, S.I. Magao, K. Sakanishi, D.D. Whitehurst, Zeolite, 18 (1997) 142.
2. U.S. Patent 4,954,325.
3. M.A. Camblor, A. Corma, H. Garcia, V. Semmer-Herlédan, S. Valencia, J. Catal., 177 (1998) 267.
4. R. Ravishankar, D. Bhattacharya, N.E. Jacob, S. Sivasanker, Micropor. Mat., 4 (1995) 83.
第三章
1. G. Dahlhoff, J.P.M. Niederer, W.F. Höelderich, Catal. Rev., 43 (4) (2001) 381.
2. Toray Industries, Hydrocarbon Processing, 60 (1981) 142.
3. A. Thangaraj, S. Sivasankar, P. Ratnasamy, J. Catal. 137 (1992) 252.
4. P.S. Singh, R. Bandyopadhyay, S.G. Hegde, B.S. Rao, Appl. Catal. A, 136 (1996) 249.
5. L.X. Dai, K. Koyama, T. Tatsumi, Catal. Lett., 53 (1998) 211.
6. D. Shouro, Y. Moriya, T. Nakajima, S. Mishima, Appl. Catal. A, 198 (2000) 275.
7. L.X. Dai, Y. Iwaki, K.A. Koyama, T. Tatsumi, Appl. Surf. Sci., 121/122 (1997) 335.
8. L.X. Dai, R. Hayasaka, Y. Iwaki, K.A. Koyama, T. Tatsumi, Chem. Comm., (1996) 1071.
9. L.X. Dai, K Koyama, M. Miyamoto, T. Tatsumi, Appl. Catal. A, 189 (1999) 237.
10. A. Corma, H. Garcia, J. Primo, Zeolites, 11 (1991) 593.
11. M.C. Burguet, A. Aucejo, A. Corma, Can. J. Chem. Eng., 65 (1987) 944.
12. A. Aucejo, M.C. Burguet, A. Corma, V. Fornes, Appl. Catal., 22 (1986) 187.
13. H. Sato, K. Hirose, M. Kitamura, Y. Nakamura, in Proceedings of the 8th International Zeolite Conference, Amsterdam (Eds. P.A. Jacobs and R.A. van Santen), (1989) p.1213.
14. J. Röseler, G. Heitmann, W.F. Höelderich, Appl. Catal. A, 144 (1996) 319.
15. T. Takahashi, M. Nishi, Y. Tagawa, T. Kai, Micropor. Mater., 3 (1995) 467.
16. T. Takahashi, M.N.A. Nasution, T. Kai, Appl. Catal. A, 210 (2001) 339.
17. M. Kitamura, H. Ichihashi, G. Suzukamo, Y. Nakamura, US Pat. 4968793 (1990).
18. W.F. Hölderich, J. Roeseler, G. Heitmann, A.T. Liebens, Catal. Today, 37 (1997) 353.
19. T. Yashima, N. Oka, T. Komatsu, Catal. Today, 38 (1997) 249.
20. J.S. Reddy, R. Ravishankar, S. Sivanker, P. Ratnasamy, Catal. Lett., 17 (1993) 139.
21. D.S. Mao, G.Z. Lu, Q.L. Chen, Z.K. Xie, Y.X. Zhang, Catal. Lett., 77 (2001) 119.
22. P.S. Landis, P.B. Venuto, J. Catal., 6 (1996) 245.
23. H. Sato, K. Hirose, M. Kitamura, Y. Nakamura, Stud. Surf. Sci. Catal., 49 (1989) 1213.
24. T. Yashima, K. Miura, T. Komatsu, Zeolites Rel. Micropor. Mater., 84 (1994) 1897.
25. G.P. Heitmann, G. Dahlhoff, W.F. Hölderich, Appl. Catal. A, 185 (1999) 99.
26. M.K. Rubin, P. Chu, US Pat. 4954325 (1988).
27. C.T. Kresge, Q.N. Le, W.J. Roth, T. Thomson, US Pat. 52585655 (1992).
28. M.A. Asensi, A. Corma, A. Martinez, J. Catal., 158 (1996) 561.
29. A. Corma, V. Gonzalez-Alfaro, A.V. Orchilles, Appl. Catal., 129 (1995) 203.
30. M.E. Leonowicz, J.A. Lawton, S.L. Lawton, M.K. Rubin, Science, 264 (1994) 1910.
31. A. Corma, C. Corell, A. Martinez, J. Perez-Pariente, Stud. Surf. Sci. Catal., 84 (1994) 859.
32. A. Corma, Micropor. Mesopor. Mater., 21 (1998) 487.
33. R. Ravishankar, D. Bhattacharya, N.E. Jacob, S. Sivasanker, Micropor. Mater., 4 (1995) 83.
34. R. Ravishankar, T. Sen, V. Ramaswamy, H.S. Soni, S. Ganapathy, S. Sivasanker, Stud. Surf. Sci. Catal., 84 (1994) 331.
35. M.A. Camblor, A. Corma, H. Garcia, V. Semmer-Herlédan, S. Valencia, J. Catal., 177 (1998) 267.
36. H. Sato, K. Hirose, Y. Nakamura, Chem. Lett., (1993) 1987.
37. H. Ichihashi, M. Kitamura, Catal. Today, 73 (2002) 23.
38. H. Sato, S. Hasebe, H. Sakurai, K. Urabe, Y. Izumi, Appl. Catal. 29 (1987) 107.
39. G.P. Heitmann, G. Dahlhoff, W.F. Höelderich, J. Catal., 186 (1999) 12.
40. G.P. Heitmann, G. Dahlhoff, J.P.M. Niederer, W.F. Höelderich, J. Catal., 194 (2000) 122.
41. D. Shouro, Y. Ohya, S. Mishima, T. Nakajima, Appl. Catal. A, 214 (2001) 59.
42. H. Sato, K. Hirose, M. Kitamura, Y. Nakamura, Shokubai, 31 (1989) 136.
43.W.H. Chen, A. Pradhan, S.J. Jong, T.Y. Lee, I Wang, T.C. Tsai, S.B.Liu, J. Catal., 163 (1996) 436.
第四章
1. N. Kimbara, J.P. Charland, M.F. Wilson, Ind. Eng. Chem. Res., 35 (1996) 3874.
2. C. Song, X. Ma, Appl. Catal. B: Environ., 41 (2003) 207.
3. K.G. Knudsen, B.H. Cooper, H. Topsoe, Appl. Catal., 189 (1999) 205.
4. B.H. Cooper, B.B.L. Donnis, Appl. Catal. A, 137 (1996) 203.
5. M.V. Rahaman, M.A. Vannice, J. Catal., 127 (1991) 251.
6. M. Boudart, A. Aldag, N.A. dougharty, C.Girvin Harkins, J. Catal., 6 (1966) 92.
7. Cr. Contescu, Ch. Sivaraj, J.A. Schwaz, Appl. Catal., 74 (1991) 95.
8. S.D. Lin, M.A. Vannice, J. Catal., 143 (1993) 539.
9. S.D. Lin, M.A. Vannice, J. Catal., 143 (1993) 554.
10. G. Lietz, J. Völter, J.Catal., 45 (1976) 121.
11. J. Völter, M. Hermann and K. Heise, J. Catal., 12 (1968) 307.
12. R. Gomez, G. Del Angel, C. Damian and G. Corro, React. Kinet. Catal. Lett., 11 (1976) 137.
13. L.M. Kustov , A.Yu. Stakhee, T.V. Vasina, O.V. Masloboishchikova, E.G. Khelkovslaya-Sergeeva, P. Zeuthen, Stud. Surf. Sci. Catal., 138 (2001) 307.
14. G.B. McVicker, M.S. Touvelle, C.W. Hudson, D.P. Klein, W.C. Baird, Jr. B.R. Cook, J.G. Chen, S. Hantzer, D.E.W. Vaughan, E.S. Ellis, O.C. Feeley, J. Catal., 210 (2002) 137.
15. M.A. Arribas, A. Martinez, Appl. Catal. A:Gen., 230 (2002) 203.
16. M. Daage, G.B. McVicker, M.S. Touvelle, C.W. Hudson, D.P. Klein, B.R. Cook, J.G. Chen, S. Hantzer, D.E.W. Vaughan, E.S. Ellis, Stud. Surf. Sci. Catal., 135 (2001) 159.
17. L. Leite, E. Benazzi, N. Marchal-George, Catal. Today, 65 (2001) 241.
18. B. Coq, A. Tijani, R. Dutartre, , F. Figueras, J. Mol. Catal., 79 (1993) 253.
19. B. Coq, R. Dutartre, F. Figueras, T. Tazi, J. Catal., 122 (1982) 428.
20. B. Coq, A. Bittar, F. Fugueras, Appl. Catal., 59 (1990) 103.
21. B.J. Kip, F.B. Duivenvoorden, D.C. Koningsberger, R. Prins, J. Catal., 105 (1987) 26.
22. P.B. Wells, J.Catal., 52 (1978) 298.
23. J. Wang, L.M. Huang, Q.Z. Li, Appl. Catal. A-Gen, 175 (1998) 191.