研究生: |
羅信斌 Lo, Hsin-Pin |
---|---|
論文名稱: |
類光束偏振糾纏光子對製備與研究 Generation and Studies of Beamlike Polarization-Entangled Photon Pair |
指導教授: |
陳柏中
Chen, Pochung 羅志偉 Luo, Chih-Wei 籔下篤史 Atsushi Yabushita |
口試委員: |
李瑞光
Lee, Ray-Kuang 徐立義 Hsu, Li-Yi 陳岳男 Chen, Yueh-Nan 李哲明 Li, Che-Ming 陳柏中 Chen, Pochung 羅志偉 Luo, Chih-Wei 籔下篤史 Atsushi Yabushita |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 84 |
中文關鍵詞: | 類光束 、量子資訊 、糾纏光子對 |
外文關鍵詞: | Beamlike, Quantum information, Entangled photon pair |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們研究類光束偏振糾纏光子對的製備與量測方式,以及如何進行實驗結果分析。論文內容主要分為實驗系統的建構以及實驗結果分析兩部分,其中實驗結果分析部分再分為兩個部分,分別為類光束偏振糾纏光子對的產生與干涉實驗,以及類光束光子以二對二光纖產生偏振糾纏光子對。
首先,我們利用超短脈衝雷射 (ultra short pulse laser) 產生二倍頻光源,再將之激發非線性晶體 (Type-II BBO),在滿足相位匹配下的條件下,利用自發參量降頻轉換(Spontaneous parametric down-conversion)產生偏振相互垂直的類光束光子對。此光子對經由CCD確認所產生的光子為類光束狀,與傳統產生之椎狀光子對有極大的差異。在此實驗中,我們成功以此類光束狀非糾纏態光子對與另一對偏振相差九十度的光子對干涉後,得到糾纏態。
透過二對二光纖(即50: 50分光器)測量兩光子的Hong-Ou-Mandel (HOM)干涉以確認光子對是同時且經過相同路徑到達二對二光纖交會處。若將二對二光纖換為單膜光纖,改變此兩對光子的光程差,並量測相同偏振之干涉訊號,結果顯示有極高的對比度。接著,在反射光子對的光路中各插入一片四分之一波板,使光子的偏振在經過四分之一波板兩次後旋轉九十度。若將測量基底 (偏振片) 轉到四十五度,依然可以得到高對比度糾纏訊號。因此,可以知道,此生產方式可以得到偏振高度糾纏 (0.90±0.05) 的偏振糾纏光子對。
但是,上述之實驗架構之對光難度極高,因此我們設計了另一實驗架構,將類光束光子以二對二光纖產生偏振糾纏光子對。此方式是將具有偏振的類光束光子對各自注入光纖中,使得在未測量之前無法分辨這兩個光子之間的偏振差異,因此可以得到另一偏振糾纏的光子對。此實驗架構與實驗方式非常容易做調整,只需將光子收入光纖中,接著調整光子由非線性晶體到光纖交會點的光程差相同,就可以得到偏振高度糾纏的光子對。
若轉動偏振器並測量同時產生的光子對個數,可以知道我們的糾纏光子對具有高度糾纏態0.93±0.006。隨後,以此高度糾纏的光子對測量Bell-CHSH不等式(S=2.59±0.08),其大於古典態閥值(threshold=2) 2.59-2=0.59,且此值約為測量誤差值的7倍(=0.59/0.08),因此可以確定此方法產生之光子為量子狀態的糾纏光子對。
我們證實類光束偏振光子對經由特殊設計的操控系統可以產生高度糾纏的量子糾纏態,這將提供量子資訊科學與量子計算研究一方便操控及可靠之糾纏源。
In this dissertation, we introduce the methods of the beamlike polarization-entangled photon pair generation, measurements and analyses. Through these methods, they would be easy to collect the SPDC photon pairs. This dissertation reports two major results about beamlike polarization-entangled photon pair generation. One is polarization-entangled generation via geometrical overlap in a free space. The other is through a 2x2 single mode fiber. We generate the second harmonic light by ultra-short pulse laser. The second harmonic (SH) light was used to pump the Type-II BBO crystal and to generate the beamlike polarized photon pairs under the phase matching condition, which can be imaged by a CCD. The Hong-Ou-Mandel (HOM) dip interference signal was observed when photons were overlapping in the crossing point of a 2x2 single mode fiber.
In order to generate beamlike photon pairs with polarization-entanglement and interference, we used a mirror to reflect the SH light back to the BBO crystal. Before reflecting on the mirror, the SH light would generate the beamlike photon pairs as the SH light was passing through the BBO crystal for the first time. The photon pairs are called the first photon pairs in the following. After reflecting, the reflected SH light could also generate beamlike photon pairs called the second photon pairs. The polarization of the first photon pairs were rotated by 90 degrees by inserting a quarter-wave plate into each path of the two photons of the pair. Then the first photon pairs reflected back and had overlapping optical path with the second pairs. We can find the interference signal and the beamlike polarization-entangled photon pairswith the fidelity of 0.90±0.05, indicating that the generated photon pairs were highly polarization-entangled.
To overcome the difficulty in the alignment of above method, we developed another method to generate beamlike polarization-entangled photon pairs by a 2x2 single-mode fiber. This method is that two photons of one beamlike polarized photon pair were directly incident to two input ports of the 2x2 single-mode fiber, respectively. Each of the polarized photon could emerge from any output ports of the 2x2 fiber. Therefore, the photon pairs coming out from the 2x2 fiber had polarization entanglement. This approach made it easy to perform the alignment for the experimental system and the generated photon pairs were highly polarization-entangled.
Rotating the polarizer, we can analyze the photon polarization by the coincidence measurements. The local measurements estimated the fidelity to be 0.93±0.006. For the Bell-CHSH inequality (S) measurements, we obtained S=2.59±0.08 which is higher than the classical threshold (=2) and seven times the standard deviation of measuring system. It implies that we have generated high quality beamlike polarization-entangled photon pairs by a 2x2 single-mode fiber.
Our results indicates that the high quality beamlike polarization-entangled photon pairs can be generated via the overlap of two photon pairs in free space or a 2x2 single-mode fiber. The entangled photon source developed in this study can be utilized in further researches of quantum information science and quantum computation.
References
[1] A. Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?”, Phys. Rev. 47, 777 (1935).
[2] E. Schrodinger, ”Die gegenwartige Situation in der Quantenmechanik ”, Die Naturwiss. 23, 807 (1935). English translation by J. D. Trimmer, Proc. Am. Philos. Soc. 124, 323 (1980).
[3] D. Bohm, ”Quantum Theory”, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1951), p. 611-615.
[4] J. S. Bell, ”On The Einstein Podolsky Rosen Paradox”, Physics 1, 195 (1964).
[5] C. A. Kocher and E. D. Commins, ”Polarization Correlation of Photons Emitted in an Atomic Cascade”, Phys. Rev. Lett. 18, 575 (1967).
[6] S. J. Freedman and J. F. Clauser, ”Experimental Test of Local Hidden-Variable Theories”, Phys. Rev. Lett. 28, 938 (1972).
[7] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, ”Proposed Experiment to Test Local Hidden-Variable Theories”, Phys. Rev. Lett. 23, 880 (1969).
[8] A. Aspect, P. Grangier, and G. Roger, ”Experimental Test of Realistic Local Theories via Bell’s Theorem”, Phys. Rev. Lett. 47, 460 (1981).
[9] A. Aspect, P. Grangier, and G. Roger, ”Experimental Test of Bell’s Inequalities Using Time-Varying Analyzers”, Phys. Rev. Lett. 49, 1804 (1982).
[10] Z. Y. Ou and L. Mandel, ”Violation of Bell’s Inequality and Classical Probability in a Two-Photon Correlation Experiment”, Phys. Rev. Lett. 61, 50 (1988).
[11] Paul G. Kwiat, Klaus Mattle, Harald Weinfurter, and Anton Zeilinger, “New High-Intensity Source of Polarization-Entangled Photon Pairs”, Phys. Rev. Lett. 75, 4337 (1995).
[12] W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, ”Violation of Bell Inequalities by Photons More Than 10 km Apart”, Phys. Rev. Lett. 81, 3563 (1998).
[13] W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, ”Violation of Bell’s Inequality under Strict Einstein Locality Conditions”, Phys. Rev. Lett. 81, 5039 (1998).
[14] W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, ”Long-distance Bell-type tests using energy-time entangled photons”, Phys. Rev. A 59, 4150 (1999).
[15] M. A. Rowe, D. Kielpinski, V. Meyer, C. A. Sackett, W. M. Itano, C. Monroe, and D. J. Wineland, ”Experimental violation of a Bell’s inequality with efficient detection”, Nature 409, 791 (2001).
[16] F. A. Bovino, M. Giardina, K. Svozil, and V. Vedral, ”Spatial Orientation using Quantum Telepathy”, e-print arXiv:quantum-ph/0603167 (2006).
[17] R. Ursin, F. Tiefenbacher, T. S.-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Omer, M. Furst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, ”Entanglement-based quantum communication over 144 km”, Nat. Phys. 3, 481 (2007).
[18] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, ”Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels”, Phys. Rev. Lett. 70, 1895 (1993).
[19] D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, ”Experimental quantum teleportation”, Nature 390, 575 (1997).
[20] J.-W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, ”Experimental Demonstration of Four-Photon Entanglement and High-Fidelity Teleportation”, Phys. Rev. Lett. 86, 4435 (2001).
[21] X.-M. Jin, J.-G. Ren, B. Yang, Z.-H. Yi, F. Zhou, X.-F. Xu, S.-K. Wang, D. Yang, Y.-F. Hu, S. Jiang, T. Yang, H. Yin, K. Chen, C.-Z. Peng, and J.-W. Pan, ”Experimental free-space quantum teleportation”, Nature Photonics 4, 376 (2010).
[22] Artur K. Ekert, ”Quantum cryptography based on Bell’s theorem”, Phys. Rev. Lett. 67, 661 (1991).
[23] W. Tittel and G. Weihs, “Photonic entanglement for fundamental tests and quantum communication”, Quantum Inf. Comput. 1, 3 (2001).
[24] Nicolas Gisin, Gregoire Ribordy, Wolfgang Tittel, and Hugo Zbinden, ”Quantum cryptography”, Rev. Mod. Phys. 74, 145 (2002).
[25] Q. Wang, W. Chen, G. Xavier, M. Swillo, T. Zhang, S. Sauge, M. Tengner, Z.-F. Han, G.-C. Guo, and A. Karlsson, ”Experimental Decoy-State Quantum Key Distribution with a Sub-Poissionian Heralded Single-Photon Source”, Phys. Rev. Lett. 100, 090501 (2008).
[26] C. H. Bennett, ”Quantum Cryptography Using Any Two Nonorthogonal States”, Phys. Rev. Lett. 68, 3121 (1992).
[27] T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, ”Quantum Cryptography with Entangled Photons”, Phys. Rev. Lett. 84, 4729 (2000).
[28] Y.-A. Chen, A.-N. Zhang, Z. Zhao, X.-Q. Zhou, C.-Y. Lu, C.-Z. Peng, T. Yang, and J.- W. Pan, ”Experimental Quantum Secret Sharing and Third-Man Quantum Cryptography”, Phys. Rev. Lett. 95, 200502 (2005).
[29] Y. H. Shih, “Quantum imaging, quantum lithography and the uncertainty principle”, J. Mod. Opt. 49, 2275 (2002).
[30] T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement”, Phys. Rev. A 52, R3429 (1995).
[31] E. J. S. Fonseca, C. H. Monken, and S. P’adua, “Measurement of the de Broglie Wavelength of a Multiphoton Wave Packet”, Phys. Rev. Lett. 82, 2868 (1999).
[32] J. Jacobson, G. Bjork, I. Chuang, and Y. Yamamoto, “Photonic de Broglie Waves”, Phys. Rev. Lett. 74, 4835 (1995).
[33] K. Edamatsu, R. Shimizu, and T. Itoh, “Measurement of the Photonic de Broglie Wavelength of Entangled Photon Pairs Generated by Spontaneous Parametric Down-Conversion”, Phys. Rev. Lett. 89, 213601 (2002).
[34] P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, “De Broglie wavelength of a non-local four-photon state”, Nature 429, 158 (2004).
[35] D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y.H. Shih, “Observation of Two-Photon “Ghost” Interference and Diffraction”, Phys. Rev. Lett. 74, 3600 (1995).
[36] C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference”, Phys. Rev. Lett. 59, 2044 (1987).
[37] M. D’Angelo, M. V. Chekhova, and Y. H. Shih, “Two-Photon Diffraction and Quantum Lithography”, Phys. Rev. Lett. 87, 013602 (2001).
[38] R. Shimizu, K. Edamatsu, and T. Itoh, “Quantum diffraction and interference of spatially correlated photon pairs generated by spontaneous parametric down-conversion”, Phys. Rev. A 67, 041805 (2003).
[39] A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum Interferometric Optical Lithography: Exploiting Entanglement to Beat the Diffraction Limit”, Phys. Rev. Lett. 85, 2733 (2000).
[40] M. Bellini, F. Marin, S. Viciani, A. Zavatta, and F. T. Arecchi, “Nonlocal Pulse Shaping with Entangled Photon Pairs”, Phys. Rev. Lett. 90, 043602 (2003).
[41] Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, ”Experimental Realization of Entanglement Concentration and a Quantum Repeater”, Phys. Rev. Lett. 90, 207901 (2003).
[42] J. Amirloo, M. Razavi, and A. H. Majedi , ”Quantum key distribution over probabilistic quantum repeaters”, Phys. Rev. A 82, 032304 (2010).
[43] N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, ”Quantum repeaters based on atomic ensembles and linear optics”, Rev. Mod. Phys. 83, 33 (2011).
[44] A. Lamas-Linares, C. Simon, J. C. Howell, and D. Bouwmeester, ”Experimental Quantum Cloning of Single Photons”, Science 296, 712 (2002).
[45] K. Sanaka, T. Jennewein, J. W. Pan, K. Resch, and A. Zeilinger, ”Experimental Nonlinear Sign Shift for Linear Optics Quantum Computation”, Phys. Rev. Lett. 92, 017902 (2004).
[46] S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, ”Realization of a Photonic Controlled-NOT Gate Sufficient for Quantum Computation”, Phys. Rev. Lett. 93, 020504 (2004).
[47] R. Raussendorf and H. J. Briegel, ”A One-Way Quantum Computer”, Phys. Rev. Lett. 86, 5188 (2001).
[48] P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, ”Experimental one-way quantum computing”, Nature 434, 169 (2005).
[49] Kai Chen, Che-Ming Li, Qiang Zhang, Yu-Ao Chen, Alexander Goebel, Shuai Chen, Alois Mair, and Jian-Wei Pan, ”Experimental Realization of One-Way Quantum Computing with Two-Photon Four-Qubit Cluster States”, Phys. Rev. Lett. 99, 120503 (2007).
[50] A. Yabushita and T. Kobayashi, “Spectroscopy by frequency-entangled photon pairs”, Phys. Rev. A 69, 013806 (2004).
[51] S. Takeuchi, “Beamlike twin-photon generation by use of type II parametric downconversion”, Opt. Lett. 26, 843 (2001).
[52] D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichel, and D. J. Wineland, ”Creation of a six-atom `Schrodinger cat` state”, Nature 438, 639 (2005).
[53] C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble , ”Measurement-induced entanglement for excitation stored in remote atomic ensembles”, Nature 438, 828 (2005).
[54] Y. A. Chen, S. Chen, Z.-S. Yuan, B. Zhao, C.-S. Chuu, J. Schmiedmayer, and J.-W. Pan, ”Memory-built0in quantum teleportation with photonic and atomic qubits”, Nat. Phys. 4, 103 (2008).
[55] H. Haffiner, W. Hansel, C. F. Roos, J. Benhelm, D. Chek-al0kar, M. Chwalla, T. Korber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Guhne, W. Dur, and R. Blatt , ”Scalable multiparticle entanglement of trapped ions”, Nature 438, 643 (2005).
[56] Y. A. Pashkin, T. Yamamoto, O. Astafiev, Y. Nakamura, D. V. Averin, and J. S. Tsai , ”Quantum oscillations in two coupled charge qubits”, Nature 421, 823 (2003).
[57] T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, ”Demonstration of conditional gate operation using superconducting charge qubits”, Nature 425, 941 (2003).
[58] P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, ”Ultrabright source of polarization-entangled photons”, Phys. Rev. A 60, R773 (1999).
[59] Y. H. Shih and C. O. Alley, “New Type of Einstein-Podolsky-Rosen-Bohm Experiment Using Pairs of Light Quanta Produced by Optical Parametric Down Conversion”, Phys. Rev. Lett. 61, 2921 (1988).
[60] J. G. Rarity and P. R. Tapster, ”Experiment violation of Bell’s inequality based on phase and momentum”, Phys. Rev. Lett. 64, 2495 (1988).
[61] J. D. Franson, ”Bell inequality for position and time”, Phys. Rev. Lett. 62, 2205 (1989).
[62 J. Brendel, N. Gisin, W. Tittel and H. Zbinden, ”Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication”, Phys. Rev. Lett. 82, 2594 (1999).
[63] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, ”Entanglement of the orbital angular momentum states of photons”, Nature 412, 313 (2001).
[64] X-L. Niu, Y-F. Huang, G-Y. Xiang, G-C. Guo, and Z. Y. Ou, “Beamlike high-brightness source of polarization-entangled photon pairs”, Opt. Lett. 33, 968 (2008).
[65] A. G. White, D. F. James, P. H. Eberhard, and P. G. Kwiat, ”Nonmaximally Entangled States: Production, Characterization, and Utilization”, Phys. Rev. Lett. 83, 3103 (1999).
[66] A. Zeilinger, M. A. Horne, H. Weinfurter, and M. Żukowski, ”Three-Particle Entanglements from Two Entangled Pairs”, Phys. Rev. Lett. 78, 3031 (1997).
[67] M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, ”Experimental Realization of a Three-Qubit Entangled W state”, Phys. Rev. Lett. 92, 077901 (2004).
[68] J.-W. Pan, D. Bouwmeester, M. Daniell, H. Welnfurter, and A. Zeilinger, ”Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger”, Nature 403, 515 (2000).
[69] D. Bouwmeester, J.-W. Pan, M. Daniell, H. Welnfurter, and A. Zeilinger, ”Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement”, Phys. Rev. Lett. 82, 1345 (1999).
[70] J. G. Rarity and P. R. Tapster, “Three-particle entanglement from entangled photon pairs and a weak coherent state”, Phys. Rev. A. 59, R35 (1999).
[71] H. Mikami, Y. Li, K. Fukuoka, and T. Kobayashi, “New High-Efficiency Source of a Three-Photon W State and its Full Characterization Using Quantum State Tomography”, Phys. Rev. Lett. 95, 150404 (2005).
[72] Z. Zhao, T. Yang, Y.-A. Chen, A.-N. Zhang, M. Żukowski, and J.-W. Pan, “Experimental Violation of Local Realism by Four-Photon Greenberger-Horne-Zeilinger Entanglement”, Phys. Rev. Lett. 91, 180401 (2003).
[73] N. Kiesel, C. Schmid, U. Weber, G. Toth, O. Guhne, R. Ursin, and H. Weinfurter, “Experimental Analysis of a Four-Qubit Photon Cluster”, Phys. Rev. Lett. 95, 210502 (2005).
[74] H. J. Briegel and R. Raussendorf, “Persistent Entanglement in Arrays of Interacting Particles”, Phys. Rev. Lett. 86, 910 (2001).
[75] C. Y. Lu, X.-Q. Zhou, O. Guhne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, J.-W. Pan, ”Experimental entanglement of six photons in graph states”, Nat. Phys. 3, 91 (2007).
[76] H. Weinfurter and M. Żukowski, “Four-photon entanglement from down-conversion”, Phys. Rev. A 64, 010102(R) (2001).
[77] M. Eibl, S. Gaertner, M. Bourennane, C. Kurtsiefer, M. Żukowski, and H. Weinfurter, “Experimental Observation of Four-Photon Entanglement from Parametric Down-Conversion”, Phys. Rev. Lett. 90, 200403 (2003).
[78] Y. Li and T. Kobayashi, “Four-photon entanglement from two-crystal geometry”, Phys. Rev. A 69, 020302 (2004).
[79] Y. Li and T. Kobayashi, “Four-photon W state using two-crystal geometry parametric down-conversion”, Phys. Rev. A 70, 014301 (2004).
[80] H. Mikami, Y. Li and T. Kobayashi, “Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion”, Phys. Rev. A 70, 052308 (2004).
[81] J.-S. Xu, C.-F. Li, and G.-C. Guo, ”Generation of a high-visibility four-photon entangled state and realization of a four-party quantum communication complexity scenario”, Phys. Rev. A 74, 052311 (2006).
[82] Z. Zhao, Y.-A. Chen, A.-N. Zhang, T. Yang, H. J. Briegel, and J.-W. Pan, ”Experimental demonstration of five-photon entanglement and open-destination teleportation”, Nature 430, 54 (2004).
[83] W.-B. Gao, C.-Y. Lu, X.-C. Yao, P.Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, ”Experimental demonstration of a hyper-entangled ten-qubit Schrodinger cat state”, Nature Physics 6, 331 (2010).
[84] M. Barbieri, C. Cinelli, P. Mataloni, and F. D. Martini, ”Polarization-momentum hyperentangled states: Realization and Characrerization”, Phys. Rev. A 72, 052110 (2005).
[85] G. Vallone, G. Donati, R. Ceccarelli, and P. Mataloni, ”Six-qubit two-photon hyperentangled cluster states: Characterization and application to quantum computation”, Phys. Rev. A 81, 052301 (2010).
[86] J. T. Barreiro, N. K. Langforf, N. A. Peter, and P. G. Kwiat, ”Generation of Hyperentangled Photon Pairs”, Phys. Rev. Lett. 95, 260501 (2005).
[87] S. Friberg, C. K. Hong, and L. Mandel, “Measurement of Tim Delays in the Parametric Production of Photon Pairs”, Phys. Rev. Lett. 54, 2011 (1985).
[88] O. Cosme, S. P’adua, F. A. Bovino, A. Mazzei, F. Sciarrino, and F. D. Martini, ”Hong-Ou-Mandel interferometer with one and two photon pairs” , Phys. Rev. A 77, 053822 (2008).
[89] Michanel A. Nieln and Isaac L. Chuang,”Quantum Computation and Quantum Information”, Cambridge (2005).
[90] D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum”, Phys. Rev. Lett. 70, 1244 (1993).
[91] U. Leonhardt, “Quantum-State Tomography and Discrete Wigner Function”, Phys. Rev. Lett. 74, 4101 (1995).
[92] Daniel F. V. James, Paul G. Kwiat, William J. Munro, and Andrew G. White, “Measurement of qubits”, Phys. Rev. A. 64, 052312 (2001).
[93] J. M. G. Sancho and S. F. Huelga, “Measuring the entanglement of bipartite pure states”, Phys. Rev. A. 61, 042303 (2000).
[94] O. Guhne, P. Hyllus, D. Bruβ, A. Ekert, M. Lewenstein, C. Macchiavello, and A. Sanpera, “Detection of entanglement with few local measurements”, Phys. Rev. A. 66, 062305 (2002).
[95] Claudia Wagenknecht, Che-Ming Li, Andreas Reingruber, Xiao-Hui Bao, Alexander Goebel, Yu-Ao Chen, Qiang Zhang, Kai Chen and Jian-Wei Pan,”Experimental demonstration of a heralded entanglement source”, Nature Photonics 4, 549 (2010).
[96] A. K. Jha, M. N. O’Sullivan, KamWai Clifford Chan, and R.W. Boyd, “Temporal coherence and indistinguishability in two-photon interference effects”, Phys. Rev. A 77, 021801(R) (2008).
[97] R. J. Glauber, “The Quantum Theory of Optical Coherence”, Phys. Rev. 130, 2529 (1963).
[98] M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, ”Theory of two-photon entanglement in type-II optical parametric down-conversion”, Phys. Rev. A 50, 5122 (1994).
[99] T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, ” Can Two-Photon Interference be Considered the Interference of Two Photons?”, Phys. Rev. Lett. 77, 1917 (1996).
[100] D. V. Strekalov, T. B. Pittman, and Y. H. Shih, ” What we can learn about single photons in a two-photon interference experiment”, Phys. Rev. A 57, 567 (1998).
[101] R. Bhandari and J. Samuel, ” Observation of topological phase by use of a laser interferometer”, Phys. Rev. Lett. 60, 1211 (1988).
[102] Z. Y. Ou, L. J. Wang, and L. Mandel, ” Vacuum effects on interference in two-photon down conversion”, Phys. Rev. A 40, 1428 (1989).
[103] L. J. Wang, X. Y. Zou, and L. Mandel, ” Induced coherence without induced emission”, Phys. Rev. A 44, 4614 (1991).
[104] W. K. Wootters, “Entanglement of Formation of an Arbitrary State of Two Qubits”, Phys. Rev. Lett. 80, 2245 (1998).
[105] T. B. Pittman and J. D. Franson, “Violation of Bell’s Inequality with Photons from Independent Sources”, Phys. Rev. Lett. 90, 240401 (2003).
[106] J. Fan, M. D. Eisaman, and A. Migdall , ”Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs” , Phys. Rev. A 76, 043836 (2007).
[107] H. P. Lo, A. Yabushita, C. W. Luo, PC. Chen, and T. Kobayashi, ” Beamlike photon-pair generation for two-photon interference and polarization entanglement”, Phys. Rev. A 83, 022313 (2011).