簡易檢索 / 詳目顯示

研究生: 黃文謙
Wen-Chien Huang
論文名稱: 無線感測器網路之群體基準虛擬座標分派協定及傳送保證路由協定
Group-Based Virtual Coordinate Assignment Protocol and Delivery-Guaranteed Routing Protocol in Wireless Sensor Networks
指導教授: 蔡明哲
Ming-Jer Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 35
中文關鍵詞: GPS-free路由協定傳送保證路由協定虛擬座標分派無線感測器網路
外文關鍵詞: GPS-free routing protocol, delivery-guaranteed routing protocol, virtual coordinate assignment, wireless sensor network
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們提供一個方法,在位置資訊無法獲得的無線感測器網路中建立一個虛擬座標系統(GBVCap),以及一套相對應的路由協定,此路由協定保證封包的傳輸且不需要去計算、儲存整體的拓樸資訊。我們藉由模擬來估量GBVCap、VCap、ABVCap、Euclidean、GPSR以及GSR在路由上的表現,模擬結果顯示我們的方法保證封包傳輸並可保持適中的路由路徑長度。


    In this thesis, we propose a method of constructing a virtual coordinate system (GBVCap) for wireless sensor networks in which location information is not available. A routing protocol based on GBVCap virtual coordinates is also introduced. Our routing protocol guarantees packet delivery and does not require computing and storing global topological features. Using simulations, we evaluate the performance of the proposed routing protocol (GBVCap routing), the greedy routing protocol based on VCap virtual coordinates (VCap routing), the routing protocol based on ABVCap virtual coordinates (ABVCap routing), the greedy routing protocol based on physical coordinates (Euclidean routing), greedy perimeter stateless routing (GPSR routing), and geometric spanner routing (GSR routing). The simulations show that our method guarantees packet delivery while ensuring moderate routing path length overhead costs.

    Table of Contents Abstract I Table of Contents III List of Figures IV Chapter 1 Introduction 1 Chapter 2 Related Research 4 Chapter 3 The GBVCap 6 Chapter 4 The Routing Protocol (GBVCap Routing) 13 Chapter 5 Analysis of GBVCap and Its Routing Protocol 16 Chapter 6 Performance Evaluation 22 Chapter 7 Conclusions 31 Reference 33

    Reference
    [1] J. Bachrach, R. Nagpal, M. Salib, and H. Shrobe, “Experimental results for and theoretical analysis of a self-organizing global coordinate system for ad hoc sensor networks,” Telecommunication Systems, vol. 26, pp. 213–233, 2004.
    [2] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing with guaranteed delivery in ad hoc wireless networks,” Wireless networks, vol. 7, pp. 609–616, 2001.
    [3] J. Bruck, J. Gao, and A. Jiang, “MAP: medial axis based geometric routing in sensor networks,” IEEE/ACM MOBICOM, pp. 88–102, 2005.
    [4] A. Caruso, S. Chessa, S. De, and A. Urpi, “GPS free coordinate assignment and routing in wireless sensor networks,” IEEE INFOCOM, pp. 150–160, 2005.
    [5] S. Datta, I. Stojmenovic, and J. Wu, “Internal node and shortcut based routing with guaranteed delivery in wireless networks,” Cluster Computing, vol. 5, pp. 169–178, 2002.
    [6] Q. Fang, J. Gao, L. J. Guibas, V. D. Silva, and L. Zhang, “GLIDER: gradient landmark-based distributed routing for sensor networks,” IEEE INFOCOM, pp. 339–350, 2005.
    [7] Q. Fang, J. Gao, and L. J. Guibas, “Locating and bypassing routing holes in sensor networks,” IEEE INFOCOM, pp. 2458–2468, 2004.
    [8] J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, and A. Zhu, “Geometric spanners for routing in mobile networks,” IEEE Journal on Selected Areas in Communications, vol. 23, pp. 174–185, 2005.
    [9] J. Hightower and G. Borriello, “Location systems for ubiquitous computing,” Computer, vol. 34, pp. 57–66, 2001.
    [10] B. Karp and H. T. Kung, “GPSR: greedy perimeter stateless routing for wireless networks,” IEEE/ACM MOBICOM, pp. 243–254, 2000.
    [11] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger, “Geometric ad-hoc routing: of theory and practice,” ACM PODC, pp. 63–72, 2003.
    [12] S. Lee, B. Bhattacharjee, and S. Banerjee, “Efficient geographic routing in multihop wireless networks,” IEEE/ACM MOBIHOC, pp. 230–241, 2005.
    [13] J. Li, J. Jannotti, D. DeCouto, D. Karger, and R. Morris, “A scalable location service for geographic ad-hoc routing,” IEEE/ACM MOBICOM, pp. 120–130, 2000.
    [14] Y. Liu, L. M. Ni, and M. Li, “A geography-free routing protocol for wireless sensor networks,” IEEE HPSR, pp. 351–355, 2005.
    [15] T. Park and K. G. Shin, “Soft tamper-proofing via program integrity verification in wireless sensor networks,” IEEE Transactions on Mobile Computing, vol. 4, pp. 297–309, 2005.
    [16] P. N. Pathirana, N. Bulusu, A. V. Savkin, and S. Jha, “Node localization using mobile robots in delay-tolerant sensor networks,” IEEE Transactions on Mobile Computing, vol. 4, pp. 285–296, 2005.
    [17] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica, “Geographic routing without location information,” IEEE/ACM MOBICOM, pp. 96–108, 2003.
    [18] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker, “GHT: a geographic hash table for data-centric storage,” ACM WSNA, pp. 78–87, 2002.
    [19] H. Sabbineni and K. Chakrabarty, “Location-aided flooding: an energy-efficient data dissemination protocol for wireless sensor networks,” IEEE Transactions on Computers, vol. 54, pp. 36–46, 2005.
    [20] K. Seada, A. Helmy, and R. Govindan, “On the effect of localization errors on geographic face routing in sensor networks,” IEEE/ACM IPSN, pp. 71–80, 2004.
    [21] Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz, “Localization from mere connectivity,” IEEE/ACM MOBIHOC, pp. 201–212, 2003.
    [22] M. J. Tsai, H. Y. Yang, and W. Q. Huang, “Axis-based virtual coordinate assignment protocol and delivery-guaranteed routing protocol in wireless sensor networks,” IEEE INFOCOM, 2007.
    [23] Y. Zou and K. Chakrabarty, “A distributed coverage-and connectivity-centric technique for selecting active nodes in wireless sensor networks,” IEEE Transactions on Computers, vol. 54, pp. 978–991, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE