簡易檢索 / 詳目顯示

研究生: 黎 吉
Li, Ji
論文名稱: 用於宇稱對稱不守恆量測的高通量鉈原子束
HIGH FLUX ATOMIC BEAM OF THALLIUM FOR PARITY NON-CONSERVATION EXPERIMENT
指導教授: 劉怡維
Liu, Yi-Wei
口試委員: 王立邦
Wang, Li-Bang
童世光
Tung, Shih-Kuang
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 55
中文關鍵詞: 原子束
外文關鍵詞: atomicbeam
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文的工作探索了用鉈原子束測量奇偶性非保守性(PNC)的前景。利用原子鉈中階梯形躍遷的電磁感應透明性(EIT)可以進一步提高奇偶性非保守性[1]。禁忌躍遷中的磁偶極矩與四極矩之比PNC的實驗和理論方面的重要參數。
    具有超管的原子束設備已被構造為產生鉈原子束,以減少多普勒展寬並達到更高精確度的PNC測量。使用我們的設計,通過使用377 nm激光器的實驗,我們成功觀察到高通量原子束。將來,在噴嘴溫度為,噴嘴發散角為522 mrad時,准直的原子束通量可用於PNC測量。


    This thesis work explored the prospect of measuring parity non- conservation (PNC) with Thallium atomic beam. Utilizing electromagnetically induced transparency (EIT) of the ladder-type transition of in atomic thallium allows further improvement on the parity non- conservation [1]. The ratio of the magnetic dipole moment and the quadrupole moment in a forbidden transition is an important parameter in both the experimental and theoretical aspects of atomic PNC.
    The atomic beam apparatus with hypertubes has been constructed to generate a thallium atomic beam for reduce the Doppler broadening and reaching a higher accurate atomic PNC measurement. A frequency-double 535 nm laser beam couples the and states. The EIT effect modifies the absorption and refractivity for the 1280 nm laser beam through the transition that mixes magnetic dipole transition ( ) and the electric quadrupole transition ( ). The ratio of this forbidden transition can be excreted using the EIT spectrum. The quantum- dot (QD) with wavelength region of 1280 nm, the frequency double 377 nm and the 535 nm lasers have been completed. The tests of the light sources have finished using a Tl hot cell. Using our design, we successfully observe the high flux atomic beam confirm by experiment using 377 nm lasers. At a nozzle temperature of , the collimated atomic beam flux directly after the nozzle is with the divergence angle is 522 mrad can be used for PNC measurement in the future.

    Contents Acknowledgement 4 Chapter 1 7 Introduction 11 Chapter 2 12 Theory 12 2.1 Parity Non- Conservation (PNC) 12 2.1.1 Standard Model 12 2.1.2 Atomic PNC 14 2.1.3 Atomic system consideration and results review 14 2.2 Atomic beam measurements and PNC 17 2.3. Doppler broadening effect 18 Chapter 3 20 Experiment 20 3.1. 1283nm Quantum dot Laser Source 20 3.2. 535nm Lasers Source 23 3.3. 377 nm lasers source 24 3.4. AOM driver design 25 3.4.1. AOM 25 3.4.2. Driver 27 3.5. Oven design 35 3.5.1. Oven inclusion 35 3.5.2. Build instructions 38 3.5.3 Oven heating 39 3.6. Atomic beam experiment setup 42 Chapter 4 44 Result and discussion 44 4.1 Result 44 4.1.1 Atomic beam spectroscopy 44 4.1.2 Divergence angle 47 4.1.3. Atomic beam flux 48 4.2. Discussion 48 Chapter 5 51 Conclusion 51 Reference 52

    Reference

    [1] K. Eberl, “Quantum-dot Lasers”
    [2] C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, J. L. Roberts, C. E. Tanner, and C. E. Weiman, “Measurement of parity non-conservation and an anapole moment in cesium,” Science 275, 1759- 1763 (1997). 1, 6, 156.
    [3] V. A. Dzuba, V. V. Flambaum, and J. S. M. Ginges, “High- precision calculation of parity nonconservation in cesium and test of the standard model” Phys. Rev. D 66, 076013 (2002).
    [4] N. H. Edwards, S. J. Phipp, P. E. G. Baird, and S. Nakayama, “ Precision measurement of parity non- conservation optical rotation in atomic thallium,” Phys. Rev. Lett. 74, 2654- 2657 (1995). 1, 6, 7, 9, 56.
    [5] A. Lurio and A. G. Prodell, “Hfs Separations and Hfs anomalie in the state of , , , and ,” Phys. Rev. 101, 79 (1956)
    [6] G. E. Katsoprinakis, L. Bougas, T. P. Rakitzis, V. A. Dzuba, and V. V. Flambaum, “Caculation of parity non-conserving optical rotation in iodine at 1315 nm,” Phys. Rev. A 87, 040101 (2013). 9
    [7] M. J. D. Macpherson, K. P. Zetie, R. B. Warrington, D. N. Stacey, and J. P. Hoare, “Precise measurement of parity non-conservation optical rotation at 876 nm in atomic bismuth,” Phys. Rev. Lett. 67, 2784-2787 (1991). 1, 6.
    [8] D. M. Meekhof, P. Vetter, P. K. majumder, S, K. Lamoreaux, and E. N. Fortson, “High precision measurement of parity non-conservation optical rotation in atomic lead,” Phys. Rev. Lett. 71, 3442-3445 (1993). 1,6,9.
    [9] S. J. Phipp, N. H. Edwards, P. E. G. Baird, and S. Nakayama, “ A measurement of parity non- conserving optical rotation in atomic lead,” Journal of Physics B: Atomic, Molecular and Optical Physics 29, 1861 (1996). 6
    [10] M. C. Noecker, B. P. Masterson, aand C. E. Wieman, “ Precision measurement of parity non-conservation in atomic cesium: A low- energy test of the electroweak theory,” Phys. Rev. Lett. 61, 310-313 (1996). 6
    [11] D. F. Kimball, “Parity non- conserving optical rotation on the transition in atomic ytterbium,” Phys. Rev. A 63, 052113 (2001). 9
    [12] P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “ Precise test of electroweak theory from a new measurement of parity non- conservation in atomic thallium,” Phys. Rev. Lett. 74, 2658-2661 (1995). 1, 6, 7, 8, 55
    [13] M. G. Kozlov, S. G. Porsev, and W. R. Johnson, “ Parity nonconservation in thallium,” Phys. Rev. A 64, 052107 (2001).
    [14] J. A. Behr and G. Gwinner, “Standard model tests with trapped radioactive atoms,” J. Phys. G: Nucl. Part. Phys. 36, 033101 (2009). 4,7
    [15] W. C. Haxton, C. –P. Liu, and M. J. Ramsey- Musolf, “Nuclear anapole moments,” Phys. Rev. C 65, 045502 (2002). 4,7
    [16] T.-L. Chen, I. Fan, H. -C. Chen, C.-Y. Lin, S.-E. Chen, J.-T. Shy, and Y.-W. Liu, “ Absolute frequency measurement of the transition of thallium,” Phys. Rev. A86, 052524 (2012)
    [17] M.-A. Zeldovich, “Parity non-conservation in the first order in the weak- interaction constant in electron scattering and other effects,” Sov. Phys. JETP 9, 682 (1959).
    [18] G. Gould, “ Hfs separations and hfs anomaly in the metastable level of , and ,” Phys. Rev. 101, 1828 (1956).
    [19] Guéna, D. Chauvat, P. Jacquier, E. Jahier, M. Lintz, S. Sanguinetti, A. Wasan, M. A. Bouchiat, A. V. Papoyan, and D. Sarkisyan, “ New manifestation of atomic parity violation in cesium: A chiral optical gain induced by linearly polarized 6S-7S excitation,” Phys. Rev. Lett. 90, 143001 (2003). 6
    [20] J. Guéna, M. Lintz, and M. A. Bouchiat, “ Measurement of the parity violating 6S-7S transition amplitude in cesium achieved within atomic- unit accuracy by stimulated emission detection,” Phys. Rev. A 71, 042108 (2005). 6
    [21] K. Tsigutkin, D. Dounas- Frazer, A. Family, J. E. Stalnakeer, V. V. Yashchuk, and D. Budker, “Observation of a large atomic parity violation effect in ytterbium,” Phys. Rev. Lett. 103, 071601 (2009). 6. 7. 156
    [22] M. S. Safronova, “ Atomic caculations for tests of fundamental physics,” Can. J. Phys. 89, 371 (2011).
    [23] Alexander D. Cronin, “New Techniques for Measuring Atomic Parity Violation”(1999).
    [24] M. Grundmann, “ The present status of quantum dot lasers,” Physics E: Low- dimensional Systems and Nanostructure 5, 167-184 (1999). 10, 65
    [25] N. N. Ledentsov, “Quantum Dot Heterostructures: Fabrication, Properties, Lasers”
    [26] G. Hermann, G. Lasnitchka, and D. Spengler, “ Hyperfine structure and level isotope shifts of the ( n=7-12)- and (n=6-10)-levels of measured by atomic beam spectroscopy,” Z. Phys. D 28, 127 (1993).
    [27] Ruwan Senaratne, et, al, Effusive atomic oven nozzle design using an aligned microcapillary array. Review of Scientific Insreucments 86, 023105 (2015).
    [28] Chieh-An Yu. Collimated lithium atomic beam source for precision laser
    spectroscopy. Master thesis, National Tsing Hua University, 2018.
    [29] J.A. Giordmaine, and T.C.Wang, Molecular Beam Formation by Long Parallel tubes. Journal of Applied Physics 31, 463 (1960)

    QR CODE