研究生: |
林建宏 |
---|---|
論文名稱: |
Zanamivir衍生物作為流感病毒抑制劑之開發及氟標記結合化學酶合成寡醣的研究與探討 Development of Zanamivir Analogs as Inhibitors of Influenza virus and Fluorous Tag Assisted Chemo-enzymatic Synthesis of Oligosaccharides |
指導教授: | 林俊成 |
口試委員: |
林俊成
汪炳鈞 陳貴通 蒙國光 徐祖安 |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 451 |
中文關鍵詞: | 流感抑制劑 、氟標記 、化學酶合成 、合成寡醣 |
外文關鍵詞: | zanamivir, Fluorous Tag, Synthesis of Oligosaccharides, Chemo-enzymatic |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
流感病毒經由呼吸道造成嚴重的感染,導致流感疾病的大流行。在病毒感染宿主免疫系統時,病毒上的凝血素及神經胺酸水解酶,為兩個最重要抗原。近年來,禽流感的爆發以及發現對常用藥物產生抗藥性的病毒層出不窮,設計及合成神經胺酸水解酶抑制劑是一個迫切的研究方向。在本論文中,共合成約40個瑞樂沙衍生物,並針對禽流感病毒H1N1及H3N2兩種亞型進行抑制活性測試。其中,針對屬於第一基團的神經胺酸水解酶,含有疏水性的萘環基團瑞樂沙衍生物3j,展現最佳的抑制活性IC50為20 nM;在本論文中,醯基胍類的瑞樂沙衍生物對禽流感病毒H1N1及H3N2兩種亞型的抑制活性皆屬於奈米濃度。利用所延伸的醯基可與胺基酸E119及D151產生重要的氫鍵鍵結;此外,疏水性基團也可能與鄰近的活性中心-150 cavity產生作用力。在本論文的研究結果可提供幫助,發展更多具潛力的神經胺酸水解酶抑制劑。
論文的第二部分為氟標記結合化學酵素合成寡醣的研究與探討。酵素合成法適合複雜的寡醣體之合成,但在純化上有時懭時費日,且導致低產率的結果。因此,為了有效免除複雜醣體的費時費力的純化過程,綜合可行且簡單有效的純化方法是渴望的研究發展重點。為達到這目的,在本論文中,結合氟標記在醣體化合物的還原端,對於高極性的碳水化合物發展一個新穎的純化方式;成功的合成且純化得到四醣體-Sialyl Lewis X及聚N-乙醯基乳醣胺。首先,以化學合成法將氟標記掛於N-乙醯葡萄糖胺,接著利用酵素合成法,結合磷酸葡萄糖胸苷轉移酶、N-乙醯基己胺糖轉移酶、β-1,3-乙醯葡萄糖胺轉移酶、β-1,4-半乳糖轉移酶、α-1,4-半乳糖轉移酶、α-2,3-唾液酸轉移酶及α-1,3-岩藻糖轉移酶,在非還原端延伸醣鏈長度。因此,藉由氟標記,可發展多樣性的醣類分子庫。
Influenza virus is the cause of major respiratory illness in human populations, and the trimeric viral hemagglutinin (HA) and neuraminidase (NA) proteins are the two most prominent antigens targeted by the host immune system. The design and synthesis of NA inhibitors is a subject of intense research owing to both the recent outbreaks of avian influenza and the emergence of viruses that are highly resistant to widely used drugs. In this study, a series of acylguanidine-modified zanamivir analogs (~40 analogs) were synthesized, and their inhibitory activities against the NAs of avian influenza viruses (H1N1 and H3N2) were evaluated. In particular, zanamivir derivative 3j, with a hydrophobic naphthalene substituent, exhibits the best inhibitory activity against group-1 NA, with an IC50 of 20 nM. Our results show that the average IC50 values of these zanamivir derivatives are in the nanomolar range, indicating the importance of both the carbonyl group, which can generate additional contacts through hydrogen bonding with the E119 and D151 residues of NA, and the hydrophobic group, which may interact with the adjacent 150 cavity. Our results provide information that may aid in the development of more potent neuraminidase inhibitors.
Enzymatic synthesis is suitable for synthesizing complex oligosaccharides. However, tedious purification step often lead to a low overall yield and costs a lot of time. Therefore, a simple and effective method, synthetically viable to complex glycan structures circumventing the need of labor-intensive and time-consuming purification steps is highly desirable. To address this, here, we have developed a new purification technique of carbohydrates in combination with photolysis and enzymatic synthesis by incorporating a fluorous tag at the reducing end of glycans. In this study, we are successful to synthesize oligosaccharides, such as Sialyl Lewis X (SLex) and poly-LacNAc. We first synthesized the fluorous tag containing N-acetylglucosamine by chemical synthesis, and the carbohydrate chains were elongated at the non-reducing end by employing transferases, such as thymidylyltransferase (RmlA), N-acetylhexosamine-1-kinase (NahK), β-1,3-N-acetyl-glucosaminyltransferase (HpGnT), β-1,4-galactosyltransferase (NmGalT), α-1,4-galactosyltransferase (LgtC), and α-2,3-sialyltransferase (Cst I), and α-1,3-fucosyltransferas (FucT). Furthermore, we also developed a diverse glycan library through the fluorous tag.
參考資料
1. Steinhauer, D. A.; Skehel, J. J., Genetics of influenza viruses. Annu. Rev. Genet. 2002, 36, 305-332.
2. Lee, C.-W.; Saif, Y. M., Avian influenza virus. Comp. Immunol. Microbiol. Infect. Dis. 2009, 32, 301-310.
3. Webster, R. G., 1918 Spanish influenza: The secrets remain elusive. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 1164-1166.
4. Kawaoka, Y.; Krauss, S.; Webster, R. G., Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J. Virol. 1989, 63, 4603-4608.
5. Kasson, P. M.; Ensign, D. L.; Pande, V. S., Combining Molecular Dynamics with Bayesian Analysis To Predict and Evaluate Ligand-Binding Mutations in Influenza Hemagglutinin. J. Am. Chem. Soc. 2009, 131, 11338-11340.
6. Subbarao, K.; Joseph, T., Scientific barriers to developing vaccines against avian influenza viruses. Nat. Rev. Immunol. 2007, 7, 267-278.
7. Perkins, L. E. L.; Swayne, D. E., Comparative susceptibility of selected avian and mammalian species to a Hong Kong-origin H5N1 high-pathogenicity avian influenza virus. Avian Dis. 2003, 47, 956-967.
8. Clement, B.; Lopian, K., Characterization of in Vitro Biotransformation of New, Orally Active, Direct Thrombin Inhibitor Ximelagatran, an Amidoxime and Ester Prodrug. Drug Metab. Dispos. 2003, 31, 645-651.
9. Fraser, C.; Donnelly, C. A.; Cauchemez, S.; Hanage, W. P.; Van Kerkhove, M. D.; Hollingsworth, T. D.; Griffin, J.; Baggaley, R. F.; Jenkins, H. E.; Lyons, E. J.; Jombart, T.; Hinsley, W. R.; Grassly, N. C.; Balloux, F.; Ghani, A. C.; Ferguson, N. M.; Rambaut, A.; Pybus, O. G.; Lopez-Gatell, H.; Alpuche-Aranda, C. M.; Chapela, I. B.; Zavala, E. P.; Guevara, D. M. E.; Checchi, F.; Garcia, E.; Hugonnet, S.; Roth, C.; Collaboration, T. W. R. P. A., Pandemic Potential of a Strain of Influenza A (H1N1): Early Findings. Science 2009, 324, 1557-1561.
10. Neumann, G.; Noda, T.; Kawaoka, Y., Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 2009, 459, 931-939.
11. Krug, R. M.; Aramini, J. M., Emerging antiviral targets for influenza A virus. Trends Pharmacol. Sci. 2009, 30, 269-277.
12. von Itzstein, M., The war against influenza: discovery and development of sialidase inhibitors. Nat. Rev. Drug Discov. 2007, 6, 967-974.
13. Suzuki, Y., Sialobiology of Influenza: Molecular Mechanism of Host Range Variation of Influenza Viruses. Biol. Pharm. Bull. 2005, 28, 399-408.
14. Yorkey, T. J.; Webster, J. G.; Tompkins, W. J., An improved perturbation technique for electrical-impedance imaging with some criticisms. IEEE Trans. Biomed. Eng. 1987, 34, 898-901.
15. Song, J. M.; Park, K. D.; Lee, K. H.; Byun, Y. H.; Park, J. H.; Kim, S. H.; Kim, J. H.; Seong, B. L., Biological evaluation of anti-influenza viral activity of semi-synthetic catechin derivatives. Antiviral Res. 2007, 76, 178-185.
16. Gabrielian, E. S.; Shukarian, A. K.; Goukasova, G. I.; Chandanian, G. L.; Panossian, A. G.; Wikman, G.; Wagner, H., A double blind, placebo-controlled study of Andrographis paniculata fixed combination Kan Jang in the treatment of acute upper respiratory tract infections including sinusitis. Phytomedicine 2002, 9, 589-597.
17. Chen, D.-Y.; Shien, J.-H.; Tiley, L.; Chiou, S.-S.; Wang, S.-Y.; Chang, T.-J.; Lee, Y.-J.; Chan, K.-W.; Hsu, W.-L., Curcumin inhibits influenza virus infection and haemagglutination activity. Food Chem. 2010, 119, 1346-1351.
18. Malakhov, M. P.; Aschenbrenner, L. M.; Smee, D. F.; Wandersee, M. K.; Sidwell, R. W.; Gubareva, L. V.; Mishin, V. P.; Hayden, F. G.; Kim, D. H.; Ing, A.; Campbell, E. R.; Yu, M.; Fang, F., Sialidase fusion protein as a novel broad-spectrum inhibitor of influenza virus infection. Antimicrob. Agents Chemother. 2006, 50, 1470-1479.
19. Triana-Baltzer, G. B.; Gubareva, L. V.; Klimov, A. I.; Wurtman, D. F.; Moss, R. B.; Hedlund, M.; Larson, J. L.; Belshe, R. B.; Fang, F., Inhibition of neuraminidase inhibitor-resistant influenza virus by DAS181, a novel sialidase fusion protein. PLoS One 2009, 4, e7838.
20. Boriskin, Y. S.; Leneva, I. A.; Pecheur, E. I.; Polyak, S. J., Arbidol: A broad-spectrum antiviral compound that blocks viral fusion. Curr. Med. Chem. 2008, 15, 997-1005.
21. Hoffman, L. R.; Kuntz, I. D.; White, J. M., Structure-based identification of an inducer of the low-pH conformational change in the influenza virus hemagglutinin: irreversible inhibition of infectivity. J. Virol. 1997, 71, 8808-8820.
22. Russell, R. J.; Kerry, P. S.; Stevens, D. J.; Steinhauer, D. A.; Martin, S. R.; Gamblin, S. J.; Skehel, J. J., Structure of influenza hemagglutinin in complex with an inhibitor of membrane fusion. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 17736-17741.
23. Russell, R. J.; Gamblin, S. J.; Haire, L. F.; Stevens, D. J.; Xiao, B.; Ha, Y.; Skehel, J. J., H1 and H7 influenza haemagglutinin structures extend a structural classification of haemagglutinin subtypes. Virol. 2004, 325, 287-296.
24. Davies, W. L.; Grunert, R. R.; Haff, R. F.; McGahen, J. W.; Neumayer, E. M.; Paulshock, M.; Watts, J. C.; Wood, T. R.; Hermann, E. C.; Hoffmann, C. E., Antiviral Activity of 1-Adamantanamine (Amantadine). Science 1964, 144, 862-863.
25. Horimoto, T.; Kawaoka, Y., Influenza: lessons from past pandemics, warnings from current incidents. Nat. Rev. Micro. 2005, 3, 591-600.
26. Li, K. S.; Guan, Y.; Wang, J.; Smith, G. J.; Xu, K. M.; Duan, L.; Rahardjo, A. P.; Puthavathana, P.; Buranathai, C.; Nguyen, T. D.; Estoepangestie, A. T.; Chaisingh, A.; Auewarakul, P.; Long, H. T.; Hanh, N. T.; Webby, R. J.; Poon, L. L.; Chen, H.; Shortridge, K. F.; Yuen, K. Y.; Webster, R. G.; Peiris, J. S., Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 2004, 430, 209-213.
27. Zoidis, G.; Fytas, C.; Papanastasiou, I.; Foscolos, G. B.; Fytas, G.; Padalko, E.; De Clercq, E.; Naesens, L.; Neyts, J.; Kolocouris, N., Heterocyclic rimantadine analogues with antiviral activity. Bioorg. Med. Chem. 2006, 14, 3341-3348.
28. Stephenson, I.; Nicholson, K. G., Influenza: vaccination and treatment. Eur. Respir. J. 2001, 17, 1282-1293.
29. Clover, R. D.; Waner, J. L.; Becker, L.; Davis, A., Effect of rimantadine on the immune response to influenza A infections. J. Med. Virol. 1991, 34, 68-73.
30. Showell, G. A.; Mills, J. S., Chemistry challenges in lead optimization: silicon isosteres in drug discovery. Drug Discov. Today 2003, 8, 551-556.
31. Wang, J.; Ma, C.; Wu, Y.; Lamb, R. A.; Pinto, L. H.; DeGrado, W. F., Exploring Organosilane Amines as Potent Inhibitors and Structural Probes of Influenza A Virus M2 Proton Channel. J. Am. Chem. Soc. 2011, 133, 13844-13847.
32. Mills, J. S.; Showell, G. A., Exploitation of silicon medicinal chemistry in drug discovery. Expert Opin. Investig. Drugs 2004, 13, 1149-1157.
33. Tisdale, M.; Ellis, M.; Klumpp, K.; Court, S.; Ford, M., Inhibition of influenza virus transcription by 2'-deoxy-2'-fluoroguanosine. Antimicrob. Agents Chemother. 1995, 39, 2454-2458.
34. Furuta, Y.; Takahashi, K.; Kuno-Maekawa, M.; Sangawa, H.; Uehara, S.; Kozaki, K.; Nomura, N.; Egawa, H.; Shiraki, K., Mechanism of action of T-705 against influenza virus. Antimicrob. Agents Chemother. 2005, 49, 981-986.
35. Kao, R. Y.; Yang, D.; Lau, L.-S.; Tsui, W. H. W.; Hu, L.; Dai, J.; Chan, M.-P.; Chan, C.-M.; Wang, P.; Zheng, B.-J.; Sun, J.; Huang, J.-D.; Madar, J.; Chen, G.; Chen, H.; Guan, Y.; Yuen, K.-Y., Identification of influenza A nucleoprotein as an antiviral target. Nature Biotechnol. 2010, 28, 600-U688.
36. Su, C.-Y.; Cheng, T.-J. R.; Lin, M.-I.; Wang, S.-Y.; Huang, W.-I.; Lin-Chu, S.-Y.; Chen, Y.-H.; Wu, C.-Y.; Lai, M. M. C.; Cheng, W.-C.; Wu, Y.-T.; Tsai, M.-D.; Cheng, Y.-S. E.; Wong, C.-H., High-throughput identification of compounds targeting influenza RNA-dependent RNA polymerase activity. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 19151-19156.
37. Murti, K. G.; Webster, R. G., Distribution of Hemagglutinin and Neuraminidase on Influenza Virions as Revealed by Immunoelectron Microscopy. Virol. 1986, 149, 36-43.
38. Gong, J. Z.; Xu, W. F.; Zhang, J., Structure and functions of influenza virus neuraminidase. Curr. Med. Chem. 2007, 14, 113-122.
39. Nordly, P.; Korsholm, K. S.; Pedersen, E. A.; Khilji, T. S.; Franzyk, H.; Jorgensen, L.; Nielsen, H. M.; Agger, E. M.; Foged, C., Incorporation of a synthetic mycobacterial monomycoloyl glycerol analogue stabilizes dimethyldioctadecylammonium liposomes and potentiates their adjuvant effect in vivo. Eur. J. Pharm. Biopharm. 2011, 77, 89-98.
40. Meindl, P.; Tuppy, H., 2-Deoxy-2,3-Dehydrosialic Acids, .2. Competive Inhibition of Vibrio Cholerae Neuraminidase by 2-Deoxy-2,3-Dehydro-N-Acylneuraminic Acids. H-S Z Physiol. Chem. 1969, 350, 1088-1092
41. von Itzstein, M.; Wu, W.-Y.; Kok, G. B.; Pegg, M. S.; Dyason, J. C.; Jin, B.; Phan, T. V.; Smythe, M. L.; White, H. F.; Oliver, S. W.; Colman, P. M.; Varghese, J. N.; Ryan, D. M.; Woods, J. M.; Bethell, R. C.; Hotham, V. J.; Cameron, J. M.; Penn, C. R., Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 1993, 363, 418-423.
42. Kim, C. U.; Lew, W.; Williams, M. A.; Liu, H.; Zhang, L.; Swaminathan, S.; Bischofberger, N.; Chen, M. S.; Mendel, D. B.; Tai, C. Y.; Laver, W. G.; Stevens, R. C., Influenza Neuraminidase Inhibitors Possessing a Novel Hydrophobic Interaction in the Enzyme Active Site: Design, Synthesis, and Structural Analysis of Carbocyclic Sialic Acid Analogues with Potent Anti-Influenza Activity. J. Am. Chem. Soc. 1997, 119, 681-690.
43. Smee, D. F.; Huffman, J. H.; Morrison, A. C.; Barnard, D. L.; Sidwell, R. W., Cyclopentane Neuraminidase Inhibitors with Potent In Vitro Anti-Influenza Virus Activities. Antimicrob. Agents Chemother. 2001, 45, 743-748.
44. Varghese, J. N.; Laver, W. G.; Colman, P. M., Structure of the Influenza-Virus Glycoprotein Antigen Neuraminidase at 2.9-a-Resolution. Nature 1983, 303, 35-40.
45. Macdonald, S. J. F.; Cameron, R.; Demaine, D. A.; Fenton, R. J.; Foster, G.; Gower, D.; Hamblin, J. N.; Hamilton, S.; Hart, G. J.; Hill, A. P.; Inglis, G. G. A.; Jin, B.; Jones, H. T.; McConnell, D. B.; McKimm-Breschkin, J.; Mills, G.; Nguyen, V.; Owens, I. J.; Parry, N.; Shanahan, S. E.; Smith, D.; Watson, K. G.; Wu, W.-Y.; Tucker, S. P., Dimeric Zanamivir Conjugates with Various Linking Groups Are Potent, Long-Lasting Inhibitors of Influenza Neuraminidase Including H5N1 Avian Influenza. J. Med. Chem. 2005, 48, 2964-2971.
46. Hinou, H.; Miyoshi, R.; Takasu, Y.; Kai, H.; Kurogochi, M.; Arioka, S.; Gao, X.-D.; Miura, N.; Fujitani, N.; Omoto, S.; Yoshinaga, T.; Fujiwara, T.; Noshi, T.; Togame, H.; Takemoto, H.; Nishimura, S.-I., A Strategy for Neuraminidase Inhibitors Using Mechanism-Based Labeling Information. Chem. Asian J. 2011, 6, 1048-1056.
47. Smith, P. W.; Sollis, S. L.; Howes, P. D.; Cherry, P. C.; Starkey, I. D.; Cobley, K. N.; Weston, H.; Scicinski, J.; Merritt, A.; Whittington, A.; Wyatt, P.; Taylor, N.; Green, D.; Bethell, R.; Madar, S.; Fenton, R. J.; Morley, P. J.; Pateman, T.; Beresford, A., Dihydropyrancarboxamides Related to Zanamivir: A New Series of Inhibitors of Influenza Virus Sialidases. 1. Discovery, Synthesis, Biological Activity, and Structure−Activity Relationships of 4-Guanidino- and 4-Amino-4H-pyran-6-carboxamides. J. Med. Chem. 1998, 41, 787-797.
48. Yamashita, M.; Tomozawa, T.; Kakuta, M.; Tokumitsu, A.; Nasu, H.; Kubo, S., CS-8958, a Prodrug of the New Neuraminidase Inhibitor R-125489, Shows Long-Acting Anti-Influenza Virus Activity. Antimicrob. Agents Chemother. 2009, 53, 186-192.
49. Meindl, P.; Bodo, G.; Palese, P.; Schulman, J.; Tuppy, H., Inhibition of neuraminidase activity by derivatives of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid. Virol. 1974, 58, 457-463.
50. Li, J.; Zheng, M. Y.; Tang, W.; He, P. L.; Zhu, W. L.; Li, T. X.; Zuo, J. P.; Liu, H.; Jiang, H. L., Syntheses of triazole-modified zanamivir analogues via click chemistry and anti-AIV activities. Bioorg. Med. Chem. Lett. 2006, 16, 5009-5013.
51. Russell, R. J.; Haire, L. F.; Stevens, D. J.; Collins, P. J.; Lin, Y. P.; Blackburn, G. M.; Hay, A. J.; Gamblin, S. J.; Skehel, J. J., The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 2006, 443, 45-49.
52. Liu, Y.; Feizi, T.; Campanero-Rhodes, M. A.; Childs, R. A.; Zhang, Y.; Mulloy, B.; Evans, P. G.; Osborn, H. M. I.; Otto, D.; Crocker, P. R.; Chai, W., Neoglycolipid Probes Prepared via Oxime Ligation for Microarray Analysis of Oligosaccharide-Protein Interactions. Chem. Biol. 2007, 14, 847-859.
53. Shie, J.-J.; Fang, J.-M.; Lai, P.-T.; Wen, W.-H.; Wang, S.-Y.; Cheng, Y.-S. E.; Tsai, K.-C.; Yang, A.-S.; Wong, C.-H., A Practical Synthesis of Zanamivir Phosphonate Congeners with Potent Antiinfluenza Activity. J. Am. Chem. Soc. 2011, 133, 17959-17965.
54. Shie, J.-J.; Fang, J.-M.; Wang, S.-Y.; Tsai, K.-C.; Cheng, Y.-S. E.; Yang, A.-S.; Hsiao, S.-C.; Su, C.-Y.; Wong, C.-H., Synthesis of Tamiflu and its Phosphonate Congeners Possessing Potent Anti-Influenza Activity. J. Am. Chem. Soc. 2007, 129, 11892-11893.
55. Liu, K.-C.; Fang, J.-M.; Jan, J.-T.; Cheng, T.-J. R.; Wang, S.-Y.; Yang, S.-T.; Cheng, Y.-S. E.; Wong, C.-H., Enhanced Anti-influenza Agents Conjugated with Anti-inflammatory Activity. J. Med. Chem. 2012, 55, 8493-8501.
56. Feng, E.; Shin, W. J.; Zhu, X. L.; Li, J.; Ye, D. J.; Wang, J.; Zheng, M. Y.; Zuo, J. P.; No, K. T.; Liu, X.; Zhu, W. L.; Tang, W.; Seong, B. L.; Jiang, H. L.; Liu, H., Structure-Based Design and Synthesis of C-1- and C-4-Modified Analogs of Zanamivir as Neuraminidase Inhibitors. J. Med. Chem. 2013, 56, 671-684.
57. Nguyen, H. T.; Fry, A. M.; Gubareva, L. V., Neuraminidase inhibitor resistance in influenza viruses and laboratory testing methods. Antivir. Ther. 2012, 17, 159-173.
58. Chidlow, G. R.; Harnett, G. B.; Williams, S. H.; Tempone, S. S.; Speers, D. J.; Hurt, A. C.; Deng, Y.-M.; Smith, D. W., The detection of oseltamivir-resistant pandemic influenza A/H1N1 2009 viruses using a real-time RT-PCR assay. J. Virol. Methods 2010, 169, 47-51.
59. Deyde, V. M.; Gubareva, L. V., Influenza genome analysis using pyrosequencing method: current applications for a moving target. Expert. Rev. Mol. Diagn. 2009, 9, 493-509.
60. Potier, M.; Mameli, L.; Belisle, M.; Dallaire, L.; Melancon, S. B., Fluorometric Assay of Neuraminidase with a Sodium (4-Methylumbelliferyl-Alpha-D-N-Acetylneuraminate) Substrate. Anal. Biochem. 1979, 94, 287-296.
61. Buxton, R. C.; Edwards, B.; Juo, R. R.; Voyta, J. C.; Tisdale, M.; Bethell, R. C., Development of a Sensitive Chemiluminescent Neuraminidase Assay for the Determination of Influenza Virus Susceptibility to Zanamivir. Anal. Biochem. 2000, 280, 291-300.
62. Yang, W.; Liu, X. Y.; Peng, X. X.; Li, P.; Wang, T. X.; Tai, G. H.; Li, X. J.; Zhou, Y. F., Synthesis of novel N-acetylneuraminic acid derivatives as substrates for rapid detection of influenza virus neuraminidase. Carbohydr. Res. 2012, 359, 92-96.
63. Taubenberger, J. K.; Reid, A. H.; Lourens, R. M.; Wang, R. X.; Jin, G. Z.; Fanning, T. G., Characterization of the 1918 influenza virus polymerase genes. Nature 2005, 437, 889-893.
64. Amaro, R. E.; Minh, D. D. L.; Cheng, L. S.; Lindstrom, W. M.; Olson, A. J.; Lin, J.-H.; Li, W. W.; McCammon, J. A., Remarkable Loop Flexibility in Avian Influenza N1 and Its Implications for Antiviral Drug Design. J. Am. Chem. Soc. 2007, 129, 7764-7765.
65. Malaisree, M.; Rungrotmongkol, T.; Decha, P.; Intharathep, P.; Aruksakunwong, O.; Hannongbua, S., Understanding of known drug-target interactions in the catalytic pocket of neuraminidase subtype N1. Proteins 2008, 71, 1908-1918.
66. Amaro, R. E.; Cheng, X.; Ivanov, I.; Xu, D.; McCammon, J. A., Characterizing Loop Dynamics and Ligand Recognition in Human- and Avian-Type Influenza Neuraminidases via Generalized Born Molecular Dynamics and End-Point Free Energy Calculations. J. Am. Chem. Soc. 2009, 131, 4702-4709.
67. Rudrawar, S.; Dyason, J. C.; Rameix-Welti, M.-A.; Rose, F. J.; Kerry, P. S.; Russell, R. J. M.; van, d. W. S.; Thomson, R. J.; Naffakh, N.; von, I. M., Novel sialic acid derivatives lock open the 150-loop of an influenza A virus group-1 sialidase. Nat. Commun. 2010, 1, 1-7.
68. Li, Q.; Qi, J.; Zhang, W.; Vavricka, C. J.; Shi, Y.; Wei, J.; Feng, E.; Shen, J.; Chen, J.; Liu, D.; He, J.; Yan, J.; Liu, H.; Jiang, H.; Teng, M.; Li, X.; Gao, G. F., The 2009 pandemic H1N1 neuraminidase N1 lacks the 150-cavity in its active site. Nat. Struct. Mol. Biol. 2010, 17, 1266-1268.
69. Amaro, R. E.; Swift, R. V.; Votapka, L.; Li, W. W.; Walker, R. C.; Bush, R. M., Mechanism of 150-cavity formation in influenza neuraminidase. Nat. Commun. 2011, 2, 1390/1391-1390/1397.
70. Du, Q.-S.; Wang, S.-Q.; Chou, K.-C., Analogue inhibitors by modifying oseltamivir based on the crystal neuraminidase structure for treating drug-resistant H5N1 virus. Biochem. Biophys. Res. Commun. 2007, 362, 525-531.
71. Mohan, S.; McAtamney, S.; Haselhorst, T.; von, I. M.; Pinto, B. M., Carbocycles Related to Oseltamivir as Influenza Virus Group-1-Specific Neuraminidase Inhibitors. Binding to N1 Enzymes in the Context of Virus-like Particles. J. Med. Chem. 2010, 53, 7377-7391.
72. Wen, W.-H.; Wang, S.-Y.; Tsai, K.-C.; Cheng, Y.-S. E.; Yang, A.-S.; Fang, J.-M.; Wong, C.-H., Analogs of zanamivir with modified C4-substituents as the inhibitors against the group-1 neuraminidases of influenza viruses. Bioorg. Med. Chem. 2010, 18, 4074-4084.
73. D'Ursi, P.; Chiappori, F.; Merelli, I.; Cozzi, P.; Rovida, E.; Milanesi, L., Virtual screening pipeline and ligand modelling for H5N1 neuraminidase. Biochem. Biophys. Res. Commun. 2009, 383, 445-449.
74. Li, Y.; Zhou, B.; Wang, R., Rational design of Tamiflu derivatives targeting at the open conformation of neuraminidase subtype 1. J. Mol. Graph. Model. 2009, 28, 203-219.
75. von Itzstein, M.; Jin, B.; Wu, W.-Y.; Chandler, M., A convenient method for the introduction of nitrogen and sulfur at C-4 on a sialic acid analogue. Carbohydr. Res. 1993, 244, 181-185.
76. Kok, G. B.; Van, P. T.; Von, I. M., Bromohydroxylation of glycals-an investigation into the reaction of some 4-N-acylated derivatives of methyl 5-acetamido-7,8,9-tri-O-acetyl-2,6-anhydro-3,4,5-trideoxy-D-glycero-D-galacto-non-2-enonate and its 4-epimer. J. Carbohydr. Chem. 2001, 20, 359-374.
77. Bernatowicz, M. S.; Wu, Y.; Matsueda, G. R., Urethane protected derivatives of 1-guanylpyrazole for the mild and efficient preparation of guanidines. Tetrahedron Lett. 1993, 34, 3389-3392.
78. Ying, L.; Gervay-Hague, J., One-Bead–One-Inhibitor–One-Substrate Screening of Neuraminidase Activity. ChemBioChem 2005, 6, 1857-1865.
79. Lai, L.; Xu, Z.; Zhou, J.; Lee, K.-D.; Amidon, G. L., Molecular Basis of Prodrug Activation by Human Valacyclovirase, an α-Amino Acid Ester Hydrolase. J. Biol. Chem. 2008, 283, 9318-9327.
80. Alapafuja, S. O.; Nikas, S. P.; Shukla, V. G.; Papanastasiou, I.; Makriyannis, A., Microwave-assisted synthesis of sodium sulfonates precursors of sulfonyl chlorides and fluorides. Tetrahedron Lett. 2009, 50, 7028-7031.
81. Rota, P.; Allevi, P.; Agnolin, I. S.; Mattina, R.; Papini, N.; Anastasia, M., A simple synthesis of N-per-fluoroacylated and N-acylated glycals of neuraminic acid with a cyclic amino substituent at the 4α position as possible inhibitors of sialidase. Org. Biomol. Chem. 2012, 10, 2885-2894.
82. ACD/ChemSketch, v., Advanced Chemistry Development, Inc., Toronto, ON, Canada. http://www.acdlabs.com, 2010.
83. Xu, X.; Zhu, X.; Dwek, R. A.; Stevens, J.; Wilson, I. A., Structural Characterization of the 1918 Influenza Virus H1N1 Neuraminidase. J. Virol. 2008, 82, 10493-10501.
84. Lin, C.-H.; Chang, T.-C.; Das, A.; Fang, M.-Y.; Hung, H.-C.; Hsu, K.-C.; Yang, J.-M.; von Itzstein, M.; Mong, K. K. T.; Hsu, T.-A.; Lin, C.-C., Synthesis of acylguanidine zanamivir derivatives as neuraminidase inhibitors and the evaluation of their bio-activities. Org. Biomol. Chem. 2013, 11, 3943-3948.
85. Hung, H.-C.; Tseng, C.-P.; Yang, J.-M.; Ju, Y.-W.; Tseng, S.-N.; Chen, Y.-F.; Chao, Y.-S.; Hsieh, H.-P.; Shih, S.-R.; Hsu, J. T. A., Aurintricarboxylic acid inhibits influenza virus neuraminidase. Antiviral Res. 2009, 81, 123-131.
86. Hung, H.-C.; Liu, C.-L.; Hsu, J. T. A.; Horng, J.-T.; Fang, M.-Y.; Wu, S.-Y.; Ueng, S.-H.; Wang, M.-Y.; Yaw, C.-W.; Hou, M.-H., Development of an Anti-Influenza Drug Screening Assay Targeting Nucleoproteins with Tryptophan Fluorescence Quenching. Anal. Chem. 2012, 84, 6391-6399.
87. Potier, M.; Mameli, L.; Bélisle, M.; Dallaire, L.; Melançon, S. B., Fluorometric assay of neuraminidase with a sodium (4-methylumbelliferyl-α-d-N- acetylneuraminate) substrate. Anal. Biochem. 1979, 94, 287-296.
88. von Itzstein, M.; Wu, W.-Y.; Jin, B., The synthesis of 2,3-didehydro-2,4-dideoxy-4-guanidinyl-N-acetylneuraminic acid: a potent influenza virus sialidase inhibitor. Carbohydr. Res. 1994, 259, 301-305.
89. Konno, H.; Kubo, K.; Makabe, H.; Toshiro, E.; Hinoda, N.; Nosaka, K.; Akaji, K., Total synthesis of miraziridine A and identification of its major reaction site for cathepsin B. Tetrahedron 2007, 63, 9502-9513.
90. Li, J.; Kou, J.; Luo, X.; Fan, E., A facile synthesis of 2-(N-alkylamino)-pyrimidin-4-one derivatives. Tetrahedron Lett. 2008, 49, 2761-2763.
91. Zhang, Z.; Pickens, J. C.; Hol, W. G. J.; Fan, E., Solution- and Solid-Phase Syntheses of Guanidine-Bridged, Water-Soluble Linkers for Multivalent Ligand Design. Org. Lett. 2004, 6, 1377-1380.
92. Tanaka, H.; Yamaguchi, S.; Yoshizawa, A.; Takagi, M.; Shin-ya, K.; Takahashi, T., Combinatorial Synthesis of Deoxyhexasaccharides related to the Landomycin A sugar moiety based on an Orthogonal deprotection strategy. Chem. Asian J. 2010, 5, 1407-1424.
93. Varki, A., Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 1993, 3, 97-130.
94. Danishefsky, S. J.; Gervay, J.; Peterson, J. M.; McDonald, F. E.; Koseki, K.; Oriyama, T.; Griffith, D. A.; Wong, C. H.; Dumas, D. P., Remarkable regioselectivity in the chemical glycosylation of glycal acceptors: a concise solution to the synthesis of sialyl-Lewis X glycal. J. Am. Chem. Soc. 1992, 114, 8329-8331.
95. Hayashi, M.; Tanaka, M.; Itoh, M.; Miyauchi, H., A Convenient and Efficient Synthesis of SLeX Analogs. J. Org. Chem. 1996, 61, 2938-2945.
96. Lin, C.-C.; Shimazaki, M.; Heck, M.-P.; Aoki, S.; Wang, R.; Kimura, T.; Ritzen, H.; Takayama, S.; Wu, S.-H.; et, a., Synthesis of Sialyl Lewis X Mimetics and Related Structures Using the Glycosyl Phosphite Methodology and Evaluation of E-Selectin Inhibition. J. Am. Chem. Soc. 1996, 118, 6826-6840.
97. Ellervik, U.; Magnusson, G., A High Yielding Chemical Synthesis of Sialyl Lewis x Tetrasaccharide and Lewis x Trisaccharide; Examples of Regio- and Stereodifferentiated Glycosylations. J. Org. Chem. 1998, 63, 9314-9322.
98. Sakagami, M.; Horie, K.; Nakamoto, K.; Kawaguchi, T.; Hamana, H., Synthesis of Sialyl Lewis X-polysaccharide conjugates. Chem. Pharm. Bull. 2000, 48, 1256-1263.
99. Furuike, T.; Sadamoto, R.; Niikura, K.; Monde, K.; Sakairi, N.; Nishimura, S.-I., Chemical and enzymatic synthesis of glycocluster having seven sialyl lewis X arrays using β-cyclodextrin as a key scaffold material. Tetrahedron 2005, 61, 1737-1742.
100. Hanashima, S.; Castagner, B.; Esposito, D.; Nokami, T.; Seeberger, P. H., Synthesis of a Sialic Acid α(2-3) Galactose Building Block and Its Use in a Linear Synthesis of Sialyl Lewis X. Org. Lett. 2007, 9, 1777-1779.
101. Danishefsky, S. J.; Mcclure, K. F.; Randolph, J. T.; Ruggeri, R. B., A Strategy for the Solid-Phase Synthesis of Oligosaccharides. Science 1993, 260, 1307-1309.
102. Schuster, M.; Wang, P.; Paulson, J. C.; Wong, C.-H., Solid-Phase Chemical-Enzymic Synthesis of Glycopeptides and Oligosaccharides. J. Am. Chem. Soc. 1994, 116, 1135-1136.
103. Lampe, T. F. J.; Weitz-Schmidt, G.; Wong, C.-H., Parallel synthesis of sialyl Lewis X mimetics on a solid phase: access to a library of fucopeptides. Angew. Chem., Int. Ed. 1998, 37, 1707-1711.
104. Kanemitsu, T.; Wong, C.-H.; Kanie, O., Solid-Phase Synthesis of Oligosaccharides and On-Resin Quantitative Monitoring Using Gated Decoupling 13C NMR. J. Am. Chem. Soc. 2002, 124, 3591-3599.
105. Plante, O. J.; Palmacci, E. R.; Seeberger, P. H., Automated solid-phase synthesis of oligosaccharides. Science 2001, 291, 1523-1527.
106. Love, K. R.; Seeberger, P. H., Automated solid-phase synthesis of protected tumor-associated antigen and blood group determinant oligosaccharides. Angew. Chem., Int. Ed. 2004, 43, 602-605.
107. Codee, J. D. C.; Krock, L.; Castagner, B.; Seeberger, P. H., Automated solid-phase synthesis of protected oligosaccharides containing beta-mannosidic linkages. Chem. Eur. J. 2008, 14, 3987-3994.
108. Walvoort, M. T. C.; Volbeda, A. G.; Reintjens, N. R. M.; van den Elst, H.; Plante, O. J.; Overkleeft, H. S.; van der Marel, G. A.; Codee, J. D. C., Automated Solid-Phase Synthesis of Hyaluronan Oligosaccharides. Org. Lett. 2012, 14, 3776-3779.
109. Seeberger, P. H., Automated oligosaccharide synthesis. Chem. Soc. Rev. 2008, 37, 19-28.
110. Koeller, K. M.; Wong, C. H., Enzymes for chemical synthesis. Nature 2001, 409, 232-240.
111. Lairson, L. L.; Henrissat, B.; Davies, G. J.; Withers, S. G., Glycosyltransferases: Structures, functions, and mechanisms. Annu. Rev. Biochem. 2008, 77, 521-555.
112. Naumoff, D. G., Hierarchical classification of glycoside hydrolases. Biochemistry Moscow. 2011, 76, 622-635.
113. Hubbard, B. K.; Walsh, C. T., Vancomycin Assembly: Nature's Way. Angew. Chem., Int. Ed. 2003, 42, 730-765.
114. Rech, C.; Rosencrantz, R. R.; Krenek, K.; Pelantova, H.; Bojarova, P.; Roemer, C. E.; Hanisch, F.-G.; Kren, V.; Elling, L., Combinatorial One-Pot Synthesis of Poly-N-acetyllactosamine Oligosaccharides with Leloir-Glycosyltransferases. Adv. Synth. Catal. 2011, 353, 2492-2500.
115. Nakai, H.; Dilokpimol, A.; Abou, H. M.; Svensson, B., Efficient one-pot enzymatic synthesis of α-(1→4)-glucosidic disaccharides through a coupled reaction catalysed by Lactobacillus acidophilus NCFM maltose phosphorylase. Carbohydr. Res. 2010, 345, 1061-1064.
116. Boltje, T. J.; Buskas, T.; Boons, G.-J., Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat. Chem. 2009, 1, 611-622.
117. Crout, D. H.; Vic, G., Glycosidases and glycosyl transferases in glycoside and oligosaccharide synthesis. Curr. Opin. Chem. Biol. 1998, 2, 98-111.
118. Wymer, N.; Toone, E. J., Enzyme-catalyzed synthesis of carbohydrates. Curr. Opin. Chem. Biol. 2000, 4, 110-119.
119. Cao, H. Z.; Huang, S. S.; Cheng, J. S.; Li, Y. H.; Muthana, S.; Son, B.; Chen, X., Chemical preparation of sialyl Lewis x using an enzymatically synthesized sialoside building block. Carbohydr. Res. 2008, 343, 2863-2869.
120. Izumi, M.; Wong, C.-H., Microbial Sialyltransferases for Carbohydrate Synthesis. Trends Glycosci. Glycotechnol. 2001, 13, 345-360.
121. Johnson, K., Synthesis of oligosaccharides by bacterial enzymes. Glycoconj. J. 1999, 16, 141-146.
122. Yu, H.; Chokhawala, H.; Karpel, R.; Yu, H.; Wu, B.; Zhang, J.; Zhang, Y.; Jia, Q.; Chen, X., A Multifunctional Pasteurella multocida Sialyltransferase: A Powerful Tool for the Synthesis of Sialoside Libraries. J. Am. Chem. Soc. 2005, 127, 17618-17619.
123. Yu, H.; Cheng, J.; Ding, L.; Khedri, Z.; Chen, Y.; Chin, S.; Lau, K.; Tiwari, V. K.; Chen, X., Chemoenzymatic Synthesis of GD3 Oligosaccharides and Other Disialyl Glycans Containing Natural and Non-natural Sialic Acids. J. Am. Chem. Soc. 2009, 131, 18467-18477.
124. Muthana, S.; Yu, H.; Huang, S.; Chen, X., Chemoenzymic synthesis of size-defined polysaccharides by sialyltransferase-catalyzed block transfer of oligosaccharides. J. Am. Chem. Soc. 2007, 129, 11918-11919.
125. Liu, R.; Xu, Y.; Chen, M.; Weiwer, M.; Zhou, X.; Bridges, A. S.; De, A. P. L.; Zhang, Q.; Linhardt, R. J.; Liu, J., Chemoenzymatic Design of Heparan Sulfate Oligosaccharides. J. Biol. Chem. 2010, 285, 34240-34249.
126. Chokhawala, H. A.; Huang, S.; Lau, K.; Yu, H.; Cheng, J.; Thon, V.; Hurtado-Ziola, N.; Guerrero, J. A.; Varki, A.; Chen, X., Combinatorial Chemoenzymatic Synthesis and High-Throughput Screening of Sialosides. ACS Chem. Biol. 2008, 3, 567-576.
127. Galan, M. C.; Tran, A. T.; Bromfield, K.; Rabbani, S.; Ernst, B., Ionic-liquid-based MS probes for the chemo-enzymatic synthesis of oligosaccharides. Org. Biomol. Chem. 2012, 10, 7091-7097.
128a.Ko, K.-S.; Jaipuri, F. A.; Pohl, N. L., Fluorous-Based Carbohydrate Microarrays. J. Am. Chem. Soc. 2005, 127, 13162-13163.
128b.Jaipuri, F. A.; Pohl, N. L., Toward solution-phase automated iterative synthesis: fluorous-tag assisted solution-phase synthesis of linear and branched mannose oligomers. Org. Biomol. Chem. 2008, 6, 2686-2691.
129. Yang, B.; Jing, Y.; Huang, X., Fluorous-Assisted One-Pot Oligosaccharide Synthesis. Eur. J. Org. Chem. 2010, 1290-1298
130. Tojino, M.; Mori, M.; Kasuya, M. C. Z.; Hatanaka, K.; Kawaguchi, A.; Nagata, K.; Shirai, T.; Mizuno, M., Immobilization of fluorous oligosaccharide recognized by influenza virus on polytetrafluoroethylene filter. Bioorg. Med. Chem. Lett. 2012, 22, 1251-1254.
131. Tanaka, H.; Tanimoto, Y.; Kawai, T.; Takahashi, T., A fluorous-assisted synthesis of oligosaccharides using a phenyl ether linker as a safety-catch linker. Tetrahedron 2011, 67, 10011-10016.
132. Zong, C.; Venot, A.; Dhamale, O.; Boons, G.-J., Fluorous Supported Modular Synthesis of Heparan Sulfate Oligosaccharides. Org. Lett. 2013, 15, 342-345.
133. Zhang, W., Green chemistry aspects of fluorous techniques-opportunities and challenges for small-scale organic synthesis. Green Chem. 2009, 11, 911-920.
134. Kasuya, M. C. Z.; Cusi, R.; Ishihara, O.; Miyagawa, A.; Hashimoto, K.; Sato, T.; Hatanaka, K., Fluorous-tagged compound: a viable scaffold to prime oligosaccharide synthesis by cellular enzymes. Biochem. Biophys. Res. 2004, 316, 599-604.
135. Ikeda, K.; Mori, H.; Sato, M., Preparation of a fluorous protecting group and its application to the chemoenzymatic synthesis of sialidase inhibitor. Chem. Commun. 2006, 3093-3094.
136. Chen, M.-L.; Adak, A. K.; Yeh, N.-C.; Yang, W.-B.; Chuang, Y.-J.; Wong, C.-H.; Hwang, K.-C.; Hwu, J.-R. R.; Hsieh, S.-L.; Lin, C.-C., Fabrication of an oriented Fc-fused lectin microarray through boronate formation. Angew. Chem., Int. Ed. 2008, 47, 8627-8630.
137. 李本元,國立清華大學化學研究所,碩士論文,以氟標記進行蛋白質固定化,民國九十九年。
138. 林家緯,國立清華大學化學研究所,碩士論文,利用新穎氟標記有效合成N-glycan三醣核心,民國一百年。
139. 陳彥男,國立清華大學化學研究所,博士論文,藉由氟化學的應用及Julia-Kociensky烯烴化反應建構alpha-GalCer分子庫,民國一百年。
140. Pang, P.-C.; Chiu, P. C. N.; Lee, C.-L.; Chang, L.-Y.; Panico, M.; Morris, H. R.; Haslam, S. M.; Khoo, K.-H.; Clark, G. F.; Yeung, W. S. B.; Dell, A., Human Sperm Binding Is Mediated by the Sialyl-Lewisx Oligosaccharide on the Zona Pellucida. Science 2011, 333, 1761-1764.
141. Patchornik, A.; Amit, B.; Woodward, R. B., Photosensitive protecting groups. J. Am. Chem. Soc. 1970, 92, 6333-6335.
142. Bochet, C. G., Photolabile protecting groups and linkers. J. Chem. Soc. Perkin Trans. I 2002, 125-142.
143. Chien, W.-T.; Liang, C.-F.; Yu, C.-C.; Lin, J.-H.; Wu, H.-T.; Lin, C.-C., Glucose 1-Phosphate Thymidylyltransferase in the Synthesis of Uridine 5'-Diphosphate Galactose and its Application in the Synthesis of N-Acetyllactosamine. Adv. Synth. Catal. 2012, 354, 123-132.
144.侯凱齡,國立清華大學化學研究所,碩士論文,利用氟標記輔助化學酵素合成寡醣,民國一百零二年。
145. van Roon, A.-M. M.; Aguilera, B.; Cuenca, F.; van Remoortere, A.; van der Marel, G. A.; Deelder, A. M.; Overkleeft, H. S.; Hokke, C. H., Synthesis and antibody-binding studies of a series of parasite fuco-oligosaccharides. Bioorg. Med. Chem. 2005, 13, 3553-3564.
146. Fusz, S.; Srivatsan, S. G.; Ackermann, D.; Famulok, M., Photocleavable Initiator Nucleotide Substrates for an Aldolase Ribozyme. J. Org. Chem. 2008, 73, 5069-5077.
147. Hungerhoff, B.; Sonnenschein, H.; Theil, F., Combining Lipase-Catalyzed Enantiomer-Selective Acylation with Fluorous Phase Labeling: A New Method for the Resolution of Racemic Alcohols. J. Org. Chem. 2002, 67, 1781-1785.
148. Lin, P.-C.; Ueng, S.-H.; Tseng, M.-C.; Ko, J.-L.; Huang, K.-T.; Yu, S.-C.; Adak, A. K.; Chen, Y.-J.; Lin, C.-C., Site-Specific Protein Modification through CuI-Catalyzed 1,2,3-Triazole Formation and Its Implementation in Protein Microarray Fabrication. Angew. Chem., Int. Ed. 2006, 45, 4286-4290.