簡易檢索 / 詳目顯示

研究生: 潘皇緯
Pan, Huang-Wei
論文名稱: 利用電漿輔助化學氣相沉積法鍍製低熱雜訊之氮化矽與氧化矽薄膜應用於雷射干涉重力波偵測器反射鏡之研究
Study of silicon nitride and silica films fabricated by a plasma enhanced chemical vapor deposition method for low thermal noise mirror coating of laser interferometer gravitational wave detectors
指導教授: 趙煦
Chao, Shiuh
口試委員: 李正中
Lee, Cheng-Chung
施宙聰
Shy, Jow-Tsong
吳孟奇
Wu, Meng-Chyi
陳至信
Chen, Jyh- Shin
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 125
中文關鍵詞: 氮化矽薄膜氧化矽薄膜電漿輔助化學氣相沉積法機械損耗低溫系統多材料薄膜堆疊系統雷射干涉重力波偵測器
外文關鍵詞: silicon nitride film, silica film, plasma-enhanced chemical vapor deposition, mechanical loss angle, bulk loss angle, shear loss angle, multimaterial, laser interferometer gravitational wave detection
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出應用半導體產業成熟的電漿輔助化學氣相沉積法堆疊氮化矽/氧化矽薄膜製作雷射干涉重力波偵測器之大面積高品質反射鏡。內容分為兩部分,前半部探討不同成份的氮化矽薄膜與氧化矽薄膜的材料特性,包含結構、光學折射係數、消光係數、楊氏係數、應力與室溫和低溫機械損耗,這些材料特性對於雷射干涉重力波偵測器的高反射鏡應用非常重要且切題。研究結果發現,氮化矽薄膜的材料特性大多與成份比有關,於應用波長1550奈米的折射係數隨薄膜的氮矽比增加而下降,範圍從2.28到1.78;消光係數均坐落在10-5範圍。楊氏係數與應力也隨氮矽比增加而上升;氮化矽薄膜的室溫機械損耗於研究重點頻率區間坐落於低階10-4到低階10-5;不同成份比的氮化矽薄膜具有截然不同的低溫機械損耗,低氮矽比的氮化矽薄膜呈現低且平坦的低溫機械損耗,但是高氮矽比的氮化矽薄膜則具有機械損耗峰值。這與薄膜材料中的鍵結濃度有關,針對低溫損耗與鍵結的關聯,我們提出與N-H鍵、Si-H鍵與Si-N鍵相關的Two-level system,並推斷造成高氮矽比的氮化矽薄膜具有低溫機械損耗峰值的原因是來自N-H鍵中H+與孤對電子對交換位置所造成。
    後半部分透過光學模擬軟體Essential Macleod設計氮化矽/氧化矽堆疊高反射鏡的堆疊結構並評估其光學穿透與吸收,並首次透過Bulk and shear loss angles評估氮化矽/氧化矽堆疊高反射鏡結構的熱雜訊,將這些評估結果與下世代的重力波偵測器規格做比較,結果說明氮化矽/氧化矽堆疊高反射鏡結構的熱雜訊與下世代雷射干涉重力波偵測器的規格相近,證明氮化矽/氧化矽堆疊結構應用於LIGO高反射鏡的可能性,並透過multimaterial的設計有效的改善光學吸收的缺點,將光學吸收從45.9 ppm下降到2 ppm,符合LIGO Voyager與ET-LF的規格。


    Silicon is a candidate substrate for the large-area-size mirror of next-generation laser interferometer gravitational wave observatory’s (LIGO) detectors in cryogenic temperature. Therefore, the silicon-compatible coating materials and deposition process will become significant for LIGO mirror coating. It is a common practice in the silicon integrated circuit industry to deposit silicon nitride and silica thin films uniformly by using a chemical vapor deposition method on large-size silicon wafers. We utilized the plasma-enhanced chemical vapor deposition (PECVD) method to deposit silicon nitride and silica films on silicon cantilever substrate and studied the physical properties of films which are pertinent to the application of the high-reflective (HR) mirror coatings of LIGO. The optical and mechanical properties were measured and analyzed, including the optical refractive indices, extinction coefficients, energy gaps, structure, Young’s moduli, stress, and mechanical loss angles at both room and cryogenic temperatures. Those properties are all depended on the composition of the films which is determined by using the X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Optical refractive indices and extinction coefficients of the silicon nitrides were ranged from 2.28 to 1.78 and were in the 10-5 range at 1550-nm wavelength, which is a candidate laser wavelength for the next-generation detectors, respectively. Mechanical loss of the films in room temperature was various from low 10-4 to low 10-5 within the frequency range which is interested. The cryogenic mechanical loss peak of the coating materials was correlative to the bond concentrations in the films, including N-H, Si-H, Si-N, and Si-Si bonds. Three possible two-level systems (TLSs) which are associated with the N-H, Si-H, and Si-N bonds was proposed for our film. In addition, we inferred that the TLS of exchanging position between an H+ and electron lone pair associated with the N-H bond is the dominant source of the cryogenic mechanical loss for the silicon nitride films. The TLSs associated with S-H and Si-N bonds were minor loss source of the mechanical loss in cryogenic temperature.
    We also selected the silicon nitride film which has superior properties regarding high refractive index, low optical absorption, low mechanical loss, and without cryogenic loss peak together with the silica film to pile the silicon nitride/silica quarter-wave (QW) multilayer stacks. The mechanical loss angles of the silicon nitride/silica QW bilayer were measured by using the cantilever ring-down system both at the room- and cryogenic temperatures. We showed, for the first time, that the bulk and shear loss angles of the coatings can be obtained from the cantilever ring-down measurement, and we used the bulk and shear losses to calculate the coating thermal noise of silicon nitride/silica high-reflector coatings. An optical simulation software Essential Macleod were used for designing the HR mirror structures which satisfied the optical requirements for the next-generation gravitational wave detectors, ET-LF, KAGRA, and LIGO Voyager. The coating thermal noise of the silicon nitride/silica HR mirror stack is compared to the lower limit of the coating thermal noise of the end test mirrors of ET-LF, KAGRA, LIGO Voyager, and the directly measured coating thermal noise of the current coatings of Advanced LIGO. The optical absorption of the silicon nitride/silica high reflector at 1550 nm is 45.9 ppm. A multimaterial system composed of seven pairs of ion-beam-sputter deposited Ti:Ta2O5/silica and nine pairs of silicon nitride/silica on a silicon substrate were designed for the optical improvement. And the optical absorption can be reduced from 45.9 to 2 ppm that meets the specification of LIGO Voyager.

    Abstract I Acknowledgement IV Contents VI List of figures IX List of tables XIV Ch.1 Introduction 1 1.1 Gravitational wave detection 1 1.2 Laser interferometer gravitational wave observatory detectors 2 1.3 Noise sources 5 1.4 Motivation 8 Ch.2 Coating Brownian noise 12 2.1 Fluctuation-Dissipation Theorem 12 2.2 Mechanical loss angle 15 2.3 Thermal noise of coating 17 2.3.1 Theory 17 2.3.2 Bulk and shear energies 20 2.3.3 Bulk and shear loss angles 22 Ch.3 Deposition and basic material properties of silicon nitride and silica films 25 3.1 The plasma-enhanced chemical vapor deposition method 25 3.2 Composition and structure 26 3.2.1 Atomic ratio of nitrogen to silicon from XPS 27 3.2.2 Hydrogen contents from FTIR 28 3.2.3 Structure 33 3.3 Basic material properties 34 3.3.1 Refractive index 34 3.3.2 Extinction coefficient 36 3.3.3 Stress 41 3.3.4 Young’s modulus 42 3.3.5 Summary 43 Ch.4 Mechanical loss angle measured by the cantilever ring-down method 47 4.1 Introduction to cantilever ring-down systems 47 4.1.1 Dimension and vibration modes of the silicon cantilever 47 4.1.2 Fabrication of silicon cantilever substrate 49 4.1.3 Room temperature cantilever ring-down system 51 4.1.4 Cryogenic ring-down system 57 4.2 Mechanical loss angle of silicon cantilever substrate 59 4.2.1 Room temperature 59 4.2.2 Cryogenic 65 4.3 Mechanical loss angle of silicon nitride and silica films 68 4.3.1 Room-temperature loss angles of silicon nitride and silica films 71 4.3.2 Cryogenic loss angles of silicon nitride and silica films 73 4.4 Correlation between cryogenic mechanical loss and bond concentration 75 4.5 Discussion of the two-level system in silicon nitride film 77 4.5.1 Concept of two-level system 77 4.5.2 TLS associated with the N-H bond 78 4.5.3 TLS associated with the Si-H bond 82 4.5.4 TLS associated with the Si-N bond 83 Ch.5 Silicon nitride/silica quarter-wave stacks and CTN evaluation 85 5.1 Mechanical loss angle of the SiN0.40H0.79/silica bilayer 86 5.1.1 Cryogenic 86 5.1.2 Room temperature 88 5.2 The bulk and shear loss angles of SiN0.40H0.79/silica bilayer 90 5.2.1 From cantilever ring-down measurement 90 5.2.2 Result of the bulk and the shear loss angles 92 5.3 Coating thermal noise evaluation 93 5.3.1 Structures for the QW multilayer high reflectors 93 5.3.2 Temperature-dependence of elastic constants 96 5.3.3 Results of thermal noise evaluation 97 Ch.6 Multimaterial stack design for optical improvement 100 6.1 Multimaterial structure design 100 6.2 Coating thermal noise comparison and discussion 102 Ch.7 Conclusion and future work 105 7.1 Conclusion 105 7.2 Future work 106 Appendix A 109 Appendix B 112 Reference 113

    [1] A. Einstein, “Die grundlage der allgemeinen relativitatstheorie”, Annalen der Physik 49, 769 (1916)
    [2] R. A. Hulse, J. H. Taylor, “Discovery of a pulsar in a binary system”, The Astrophysical Journal 195, L51 (1975)
    [3] J. M. Weisberg, and J. H. Taylor, "The Relativistic Binary Pulsar B1913+16: Thirty Years of Observations and Analysis". In F.A. Rasio; I.H. Stairs. Binary Radio Pulsars. ASP Conference Series. 328. San Francisco: Astronomical Society of the Pacific. p. 25-31. arXiv:astro-ph/0407149(July 2005)
    [4] J. Weber, “Detection and generation of gravitational waves”, Physical Review 117, 306–313. (1960)
    [5] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Observation of gravitational waves from a binary black hole merger”, Phys. Rev. Lett. 116, 061102 (2016).
    [6] B. P. Abbott et al., “GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence”, Phys. Rev. Lett. 116, 241103 (2016).
    [7] B. P. Abbott et al., “GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2”, Phys. Rev. Lett. 118, 221101 (2017).
    [8] B. P. Abbott et al., “GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence”, Phys. Rev. Lett. 119, 141101 (2017).
    [9] B. P. Abbott et al., “GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral”, Phys. Rev. Lett. 119, 161101 (2017).
    [10] https://www.ligo.caltech.edu/LA/image/ligo20160211c
    [11] ET Science Team, “Einstein gravitational wave telescope conceptual design study: ET-0106C-10” (European gravitational observatory, Cascina Italy, 2011) https://tds.virgo-gw.eu/?call_file=ET-0106C-10.pdf
    [12] K. Somiya, “Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector”, Class. Quantum Grav. 29, 124007 (2012).
    [13] R. Adhikari et al., “LIGO III Blue Concept LIGO”, LIGO Report No. LIGO-G1200573, 2012, http://dcc.ligo.org/LIGO-G1200573-v1/public
    [14] Instrument Science white paper of LIGO 2018, https://dcc.ligo.org/LIGO-T1800133/public
    [15] Advanced Interferometers and the Search for Gravitational Waves, Bassan, Massimo (Ed.) (Springer Verlag, 2014), ISBN 978-3-319-03792-9, Ch.11
    [16] LIGO Scientific Collaboration, “Advanced LIGO”, Classical Quant. Grav. 32, 074001 (2015)
    [17] https://geardiary.com/2012/07/23/at-semicon-technical-conference-450mm-silicon-gets-real/
    [18] R. Nawrodt et al., “High mechanical Q-factor measurements on silicon bulk samples”, J. Phys. Conf. Ser. 122, 012008 (2008).
    [19] D. F. McGuigan, C. C. Lam, R. Q. Gram, A.W. Hoffman, D. H. Douglass, and H.W. Gutche, “Measurements of the mechanical Q of single-crystal silicon at low temperatures”, J. Low Temp. Phys. 30, 621 (1978).
    [20] M. J. Keevers and M. A. Green, “Absorption edge of silicon from solar cell spectral response measurements”, Appl. Phys. Lett. 66, 174 (1995).
    [21] J. Degallaix, R. Flaminio, D. Forest, M. Granata, C. Michel, L. Pinard, T. Bertrand, and G. Cagnoli, “Bulk optical absorption of high resistivity silicon at 1550 nm”, Opt. Lett. 38, 2047 (2013).
    [22] D. R. Southworth, R. A. Barton, S. S. Verbridge, B. Ilic, A. D. Fefferman, H. G. Craighead, and J. M. Parpia, “Stress and silicon nitride: A crack in the universal dissipation of glasses”, Phys. Rev. Lett. 102, 225503 (2009).
    [23] R. Brown, “A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies”, Philosophical Magazine 4, 161. (1828)
    [24] A. Einstein, “On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat”, Annalen der Physik 17, 549. (1900)
    [25] H. B. Callen, T. A.Welton, “Irreversibility and generalized noise”, Physical Review 83, 34–40. (1951)
    [26] Y. Levin, “Internal thermal noise in the LIGO test masses: A direct approach”. Phys. Rev. D 57, 659 (1998).
    [27] H. Nyquist. “Thermal Agitation of Electric Charge in Conductors”. Phys. Rev. 32 110 (1928)
    [28] A. Nowick, B. Berry, in Anelastic Relaxation in Crystalline Solids, Academic (Press, New York, 1972) Ch.1
    [29] T. Hong, H. Yang, E. K. Gustafson, R. X. Adhikari, and Y. Chen, “Brownian thermal noise in multilayer coated mirrors”, Phys. Rev. D 87, 082001 (2013).
    [30] L. D. Landau and E. M. Lifshitz, in Theory of Elasticity 3rd edn. (Oxford, Pergamon Press, 1986), Ch.1
    [31] M. H. Sadd, in Elasticity theory, applications, and numerics 2nd edn. (Burlington, Academic Press, 2009), Ch.6
    [32] J. F. Nye, in Physical properties of crystals. (London, Oxford Press, 1957), Ch.VIII.
    [33] H. W. Pan, L. C. Kuo, S. Y. Huang, M. Y. Wu, Y. H. Juang, C. W. Lee, H. C. Chen, T. T. Wen, and S. Chao, “Silicon nitride films fabricated by a plasma-enhanced chemical vapor deposition method for coatings of the laser interferometer gravitational wave detector”, Phys. Rev. D 97, 022004 (2018).
    [34] D. L. Smith, A. S. Alimonda, C. C. Chen, S. E. Ready, and B. Wacker, “Mechanism of SiNxHy deposition from NH3 -SiH4 plasma”, J. Electrochem. Soc. 137, 614 (1990).
    [35] N. Jehanathan, M. Saunders, Y. Liu, and J. Dell, “Crystallization of silicon nitride thin films synthesized by plasma-enhanced chemical vapor deposition”, Scripta Mater 57, 739 (2007).
    [36] W. R. Knolle and J. W. Osenbach, “The structure of plasma-deposited silicon nitride films determined by infrared spectroscopy”, J. Appl. Phys. 58, 1248 (1985).
    [37] M. P. Seah, “The Quantitative Analysis gf Surfaces by XPS: A Review”, Surface and interface analysis, 2, 6, (1980)
    [38] M. P. Seah, I. S. Gilmore, and S. J. Spencer, “Quantitative XPS I. Analysis of X-ray photoelectron intensities from elemental data in a digital photoelectron database”, Journal of Electron Spectroscopy and Related Phenomena 120, 93, (2001)
    [39] H. Shanks, C. J. Fang, L. Ley, M. Cardona, F. J. Demond, and S. Kalbitzer, “Infrared spectrum and structure of hydrogenated amorphous silicon”, Phys. Status Solidi 100, 43 (1980).
    [40] C. J. Fang, K. J. Gruntz, L. Ley, M. Cardona, F. J. Demond, G. Muller, and S. Kalbitzer, “The hydrogen content of a-Ge:H and a-Si:H as determined by IR spectroscopy, gas evolution and nuclear reaction techniques”, J. Non-Cryst. Solids 35-36, 255 (1980)
    [41] A. Morimoto, Y. Tsujimura, M. Kumeda, and T. Shimizu, “Properties of hydrogenated amorphous Si-N prepared by various methods”, Jpn. J. Appl. Phys. 24, 1394 (1985).
    [42] M. H. Brodsky, M. Cardona, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering”, Phys. Rev. B 16, 3556 (1977).
    [43] G. Sasaki, M. Kondo, S. Fujita, and A. Sasaki, “Properties of chemically vapor-deposited amorphous SiNx alloys”, Jpn. J. Appl. Phys. 21, 1394 (1982).
    [44] M. M. Guraya, H. Ascolani, G. Zampieri, J. I. Cisneros, J. H. DiasdaSilva, and M. P. Cantao, “Bond densities and electronic structure of amorphous SiNx:H”, Phys. Rev. B 42, 5677 (1990)
    [45] T. Makino and M. Maeda, “Bonds and defects in plasma-deposited silicon nitride using SiH4-NH3-Ar mixture”, Jpn. J. Appl. Phys. 25, 1300 (1986).
    [46] V. Verlann, et al., “The effect of composition on the bond structure and refractive index of silicon nitride deposited by HWCVD and PECVD”, Thin Solid Films 517, 3499 (2009)
    [47] D. Jousse, J. Kanicki, D. T. Krick, and P. M. Lenahan, “Electron-spin-resonance study of defects in plasma-enhanced chemical vapor deposited silicon nitride”, Appl. Phys. Lett. 52, 445 (1988).
    [48] N. Jehanathan, Y. Liu, B. Walmsley, J. Dell, and M. Saunders, “Effect of oxidation on the chemical bonding structure of PECVD SiNx thin films”, J. Appl. Phys. 100, 123516 (2006).
    [49] H. Huang, K. J. Winchester, A. Suvorova, B. Lawn, Y. Liu, X. Z. Hu, J. M. Dell, and L. Faraone, “Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films”, Mater. Sci. Eng. A 453, 435-436, (2006).
    [50] G. E. Jellison Jr. and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region”, Appl. Phys. Lett. 69, 371 (1996).
    [51] J. Tauc, in Optical Properties of Solids, edited by S. Nudelman and S. S. Mitra (Olenum, New York, 1969) p. 123.
    [52] A. Alexandrovski, M. Fejer, A. Markosyan, and R. Route,” Photothermal common path interferometry (PCI) new developments” in Proc. SPIE 7193, Solid State Lasers XVIII: Technology and Devices, p. 71930D. (2009)
    [53] J. F. Power, “Pulsed mode thermal lens effect detection in the near field via thermally induced probe beam spatial phase modulation: a theory”, Applied Optics 29, 52 (1990)
    [54] Nai-Chung Kang, Master’s thesis, NTHU Hsinchu Taiwan, 2017
    [55] Data sheet of Corning 7979 fused silica, Corning Inc. http://glassfab.com/wp-content/uploads/2015/08/HPFS-Product-Brochure-All-Grades-2014_02_13.pdf
    [56] Thin Film Center, Essential Macleod program. https://www.thinfilmcenter.com/index.php
    [57] F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids”, Phys. Rev. 92, 1324 (1953).
    [58] J. Tauc, “States in the gap”, J. Non-Cryst. Solids 8-10, 569 (1972).
    [59] M. H. Cohen, “Review of the theory of amorphous semiconductors”, J. Non-Cryst. Solids 4, 391 (1970).
    [60] J. Steinlechner, I. W. Martin, R. Bassiri, A. Bell, M. M. Fejer, J. Hough, A. Markosyan, R. K. Route, S. Rowan, and Z. Tornasi, “Optical absorption of ion-beam sputtered amorphous silicon coatings”, Phys. Rev. D 93, 062005 (2016).
    [61] J. Steinlechner, A. Khalaidovski, and R. Schnabel, “Optical absorption measurement at 1550 nm on a highly-reflective Si/SiO2 coating stack”, Classical Quant. Grav. 31, 105005 (2014).
    [62] G. G. Stoney, “The tension of metallic films deposited by electrolysis”, Proc. R. Soc. A 82, 172 (1909).
    [63] A. Stoffel, A. Kovács, W. Kronast, and B. Muller, “A LPCVD against PECVD for micromechanical applications”, J. Micromech. Microeng. 6, 1 (1996).
    [64] C. Iliescu, F. E. H. Tay, and J. Wei, “Low stress PECVD—SiNx layers at high deposition rates using high power and high frequency for MEMS applications”, J. Micromech. Microeng. 16, 869 (2006).
    [65] K. D. Mackenzie, D. J. Johnson, M. W. DeVre, R. J. Westerman, and B. H. Reelfs, “Stress control of Si-based PECVD dielectrics”, in 207th Electrochemical Society Meeting PV2005-01, Quebec City Canada, 148. (2005)
    [66] A. Bagolini, A. S. Savoia, A. Picciotto, M. Boscardin, P. Bellutti, N. Lamberti, and G. Caliano, “PECVD low stress silicon nitride analysis and optimization for the fabrication of CMUT devices”, J. Micromech. Microeng. 25, 015012 (2015).
    [67] W. A. P. Claassen, W. G. J. N. Valkenburg, M. F. C. Willemsen, and W. M. V. D. Wijgert, “Influence of deposition temperature, gas pressure, gas phase composition, and RF frequency on composition and mechanical stress of plasma silicon nitride layers”, J. Electrochem. Soc. 132, 893 (1985).
    [68] K. Allaert, A. V. Calster, H. Loos, and A. Lequesne, “A comparison between silicon nitride films made by PCVD of N2-SiH4/Ar and N2-SiH4/He”, J. Electrochem. Soc. 132, 1763 (1985).
    [69] D. W. Hess, “Plasma-enhanced CVD: Oxides, nitrides, transition metals, and transition metal Silicides”, J. Vac. Sci. Technol. A 2, 244 (1984).
    [70] Manual of nano-indenter, MTS Systems Corporation https://eng.auburn.edu/files/acad_depts/matl/xpusersmanual.pdf
    [71] J. A. Taylor, “The mechanical properties and microstructure of plasma enhanced chemical vapor deposited silicon nitride thin films”, J. Vac. Sci. Technol. A 9, 2464 (1991).
    [72] B. A. Walmsley, Y. Liu, X. Z. Hu, M. B. Bush, J.M. Dell, and L. Faraone, “Poisson’s ratio of low-temperature PECVD silicon nitride thin films”, J. Microelectromech. Syst. 16, 622 (2007).
    [73] J. Thurn and R. F. Cook, “Stress hysteresis during thermal cycling of plasma-enhanced chemical vapor deposited silicon oxide films”, J. Appl. Phy. 91, 1988 (2002).
    [74] W. C. Oliver, G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, J. Mater. Res., 7, 1564. (1992)
    [75] M. A. Hopcroft, W. D. Nix, and T.W. Kenny, “What is the Young’s modulus of silicon?”, J. Microelectromech. Syst. 19, 229 (2010).
    [76] S. Reid, G. Cagnoli, D.R.M. Crooks, J. Hough, P. Murray, S. Rowan, M.M. Fejer, R. Route, and S. Zappe, “Mechanical dissipation in silicon flexures”, Physics Letters A 351, 205 (2006)
    [77] U. Rabe et al., “Vibrations of free and surface-coupled atomic force microscope cantilevers: theory and experiment”, Review of Science Instruments 67, 3281. (1996)
    [78] Franz-Josef Elmer et al., “Eigenfrequencies of a rectangular atomic force microscope cantilever in a medium”, Journal of Applied Physics 81, 7709. (1997)
    [79] Wei-Ya Wang, Master’s thesis, NTHU Hsinchu Taiwan, 2013.
    [80] H.W. Pan, H. C. Chen, L. C. Kuo, and S. Chao, “Preliminary results of modal analysis on the cantilever-clamp system for measuring the mechanical loss of thin films by means of cantilever ring-down method”, LIGO Report No. LIGO-G1700299, 2017, https://dcc.ligo.org/LIGO-G1700299/public.
    [81] Shu-Yu Huang, Master’s thesis, NTHU Hsinchu Taiwan, 2015.
    [82] Meng-Yun Wu, Master’s thesis, NTHU Hsinchu Taiwan, 2017.
    [83] T. J. Quinn, “Stress-dependent damping in CuBe torsion and flexure suspensions at stresses up to 1.1 GPa”, Physics Letters A 197, 197. (1995)
    [84] L. C. Kuo, H.W. Pan, H. Wu, H. Y. Ho, and S. Chao, “Errors on the cryogenic mechanical loss measurement in cantilever ring-down method”, LIGO Report No. LIGO-G1700301, 2017, https://dcc.ligo.org/LIGO-G1700301/public.
    [85] S. Chao, L. C. Kuo, H.W. Pan, C. Cheng, and S. Y. Huang, “A closed loop cryogenic mechanical loss measurement system for cantilever samples”, LIGO Report No. LIGO-G1501048, 2015, https://dcc.ligo.org/LIGO-G1501048/public.
    [86] Chun Cheng, Master’s thesis, NTHU Hsinchu Taiwan, 2015.
    [87] Ling-Chi Kuo, PhD. thesis, NTHU Hsinchu Taiwan (in preparation)
    [88] S. Chao, H. W. Pan, Y. H. Juang, and S. Y. Huang, “Mechanical loss of silicon cantilever coated with a high-stress SiNx film”, LVC Stanford meeting 2014, LIGO-G1400851-v2
    [89] C. Zener, “Internal friction in solids I. Theory of internal friction in reeds”, Physical Review, 52, 230. (1937)
    [90] C. Zener, “Internal friction in solids II. General theory of thermoelastic internal friction”, Physical Review 53, 90. (1938)
    [91] Y.S. Touloukian, E.H. Buyco, in Specific heat: nonmetallic solids, (Plenum, New York, 1970)
    [92] A. Nowick, B. Berry, in Anelastic Relaxation in Crystalline Solids, (Academic Press, New York, 1972) Ch.7 and 8
    [93] K.Y. Yasumura, T.D. Stowe, E.M. Chow, T. Pfafman, T.W. Kenny, B.C. Stipe, D. Rugar, “Quality factors in micron- and submicron-thick cantilevers”, IEEE Trans. Electron Devices 9, 117, (2000)
    [94] R. G. Christian, in The theory of oscillating-vane vacuum gauges. (Pergamon Press Ltd, Feb.1966) 16: 175-178
    [95] A. W. Heptonstall, Ph. D. thesis, University of Glasgow, Aug. 2004
    [96] H. Hosaka, K. Itao, and S. Kuroda, “Damping characteristics of beam-shaped micro-oscillators”, Sensor and Actuators A 49, 87-95(1995)
    [97] P. B. Karlmann, K. J. Klein, P. G. Halverson, R. D. Peters, M. B. Levine, D. Van Buren, M. J. Dudik, “Linear thermal expansion measurements of single crystal silicon for validation of interferometer based cryogenic dilatometer”, AIP Conference Proceedings 824, 35 (2006)
    [98] P. Flubacher, A. J. Leadbetter, and J. A. Morrison, “The heat capacity of pure silicon and germanium and properties of their vibrational frequency spectra”, Philosophical Magazine, 4:39, 273, (1959)
    [99] P. D. Desai, “Thermodynamic properties of iron and silicon”, J. Phys. Chem. Ref. Data, 15 ,3, 967 (1986)
    [100] Y. S. Touloukian, in Thermophysical properties of matter volume 1, thermal conductivity metallic elements and alloy, (IFI/Plenum New York Washington 1970)
    [101] S. Rowan, R. L. Byer, M.M. Fejer, R. Route, G. Cagnoli, D. R. M. Crooks, J. Hough, P. H. Sneddon, and W. Winkler, “Test mass materials for a new generation of gravitational wave detectors”, Proc. SPIE Int. Soc. Opt. Eng. 4856, 292 (2003).
    [102] W. Winkler, K. Danzmann, A. Rüdiger, and R. Schilling, “Heating by optical absorption and the performance of interferometric gravitational-wave detectors”, Phys. Rev. A 44, 7022 (1991)
    [103] K. Numata and K. Yamamoto, in Optical Coatings and Thermal Noise in Precision Measurement, (Cambridge, New York: Cambridge University Press, 2012),Ch. 8.
    [104] D. R. M. Crooks, Ph.D. thesis, University of Glasgow, Scotland (2003).
    [105] B. Berry and W. C. Pritchet, “Vibrating reed internal friction apparatus for films and foils”, IBM J. Res. Dev. 19, 334 (1975).
    [106] A. Heptonstall, G. Cagnoli, J. Hough, and S. Rowan, “Characterisation of mechanical loss in synthetic fused silica ribbons”, Phys. Lett. A 354, 353 (2006).
    [107] B. E. White Jr. and R. O. Pohl, “Internal friction of sub-nanometer a-SiO2 Films”, Phys. Rev. Lett. 75, 4437 (1995).
    [108] X. Liu, B. E. White Jr., R. O. Pohl, E. Iwanizcko, K. M. Jones, A. H. Mahan, B. N. Nelson, R. S. Crandall, and S. Veprek, “Amorphous solid without low energy excitations”, Phys. Rev. Lett. 78, 4418 (1997).
    [109] I. W. Martin et al., “Effect of heat treatment on mechanical dissipation in Ta2O5 coatings”, Classical Quant. Grav. 25, 055005 (2008).
    [110] R. Flaminio, J. Franc, C. Michel, N. Morgado, L. Pinard, and B. Sassolas, “A study of coating mechanical and optical losses in view of reducing mirror thermal noise in gravitational wave detectors”, Classical Quant. Grav. 27, 084030 (2010).
    [111] L. C. Kuo, H. W. Pan, H. Wu, H. Y. Ho, and S. Chao, “Cryogenic Mechanical Loss of SiO2 film Deposited by Plasma Enhanced Chemical Vapor Deposition Method”, LVC meeting, 2017, LIGO-G1700300, https://dcc.ligo.org/LIGO-G1700300/public.
    [112] K. Gilroy and W. Phillips, “An asymmetric double-well potential model for structural relaxation processes in amorphous materials”, Philosophical Magazine Part B, 43 735 (1981)
    [113] T. Sugawara and I. Takasu, in Advances in Physical Organic Chemistry, edited by D. Bethell (Academic press, San Diego, 1999), Vol. 32, p. 219.
    [114] A. Stöckli, B. H. Meier, R. Kreis, R. Meyer, and R. R. Ernst, “Hydrogen bond dynamics in isotopically substituted benzoic acid dimers”, J. Chem. Phys. 93, 1502 (1990).
    [115] K. M. Merz Jr. and C. H. Reyno1ds, “Tautomerism in Free Base Porphyrins: The Porphyrin Potential Energy Surface”, J. Chem. Soc. Chem. Comm., 90 (1988)
    [116] R. Hamdan, J. P. Trinastic, and H. P. Cheng, “Molecular dynamics study of the mechanical loss in amorphous pure and doped silica”, J. Chem. Phys. 141, 054501 (2014).
    [117] W. A. Phillips, “Tunneling states in amorphous solids”, J. Low Temp. Phys. 7, 351 (1972).
    [118] R. Le Roy, H. Murai, and F. Williams, J. Am., “Tunneling model for hydrogen abstraction reactions in low-temperature solids. Application to reactions in alcohol glasses and acetonitrile crystals”, Chem. Soc. 102, 2325 (1980).
    [119] C. E. Cleeton and N. H. Williams, “Electromagnetic waves of 1.1 cm wave-length and the absorption spectrum of ammonia”, Phys. Rev. 45, 234 (1934).
    [120] U. Buchenau, N. Nucker, and A. J. Dianoux, “Neutron scattering study of the low-frequency vibrations in vitreous silica”, Phys. Rev. Lett. 53, 2316 (1984).
    [121] S. D. Penn et al., “Mechanical loss in tantala/silica dielectric mirror coatings”. Class. Quant. Grav. 20, 2917 (2003).
    [122] M. M. Fejer, S. Rowan, G. Cagnoli, D. R. M. Crooks, A. Gretarsson, G.M. Harry, J. Hough, S. D. Penn, P. H. Sneddon, and S. P. Vyatchanin, “Thermoelastic dissipation in inhomogeneous media: loss measurements and displacement noise in coated test masses for interferometric gravitational wave detectors”, Phys. Rev. D 70, 082003 (2004)
    [123] P. W. Baumeister, in Optical Coating Technology (Bellingham, SPIE press, 2004), Ch. 5.3.1, p. 5–19.
    [124] H. A. Macleod, in Thin-Film Optical Filters 2nd ed. (Bristol. Hilger, 2001), Ch.5, p. 165.
    [125] J. Steinlechner, I. W. Martin, A. S. Bell, J. Hough, M. Fletcher, P. G. Murray, R. Robie, S. Rowan, and R. Schnabel, “Silicon-based optical mirror coatings for ultrahigh precision metrology and sensing”, Phys. Rev. Lett. 120, 263602 (2018)
    [126] H. J. McSkimin, “Measurement of elastic constants at low temperatures by means of ultrasonic waves–data for silicon and germanium single crystals, and for fused silica”, J. Appl. Phys. 24, 988 (1953)
    [127] C. H. Cho, “Characterization of Young’s modulus of silicon versus temperature using a beam deflection method with a four-point bending fixture”, Curr. Appl. Phys. 9, 538 (2009)
    [128] Y. Michimura, K. Komori, A. Nishizawa, H. Takeda, K. Nagano, Y. Enomoto, K. Hayama, K. Somiya, and M. Ando, “Particle swarm optimization of the sensitivity of a cryogenic gravitational wave detector”, Phys. Rev. D 97, 122003 (2018)
    [129] S. Gras and M. Evans, “Direct measurement of coating thermal noise in optical resonators”, arXiv:1802.05372.
    [130] J. Aasi et al., (LIGO Scientific Collaboration), “Advanced LIGO”, Class. Quantum Grav. 32, 074001 (2015). Table 5.
    [131] S. Chao, Y. F. Lin, J. F. Lin, and C. C. Lee, “Scattering loss of an optimum pair high reflectance dielectric mirror”. Appl. Opt. 29, 1960. (1990)
    [132] W. Yam, S. Gras, and M. Evans, “Multimaterial coatings with reduced thermal noise”. Phys. Rev. D 91, 042002, (2015).
    [133] .J. Steinlechner, I. W. Martin, J. Hough, C. Krüger, S. Rowan, and R. Schnabel, “Thermal noise reduction and absorption optimization via multimaterial coatings”. Phys. Rev. D 91, 042001 (2015).
    [134] J. Steinlechner and I. W. Martin, “High index top layer for multimaterial coatings”, Phys. Rev. D 93, 102001 (2016).
    [135] J. Franc, N. Morgado, R. Flaminio, R. Nawrodt, I. Martin, L. Cunningham, A. Cumming, S. Rowan, and J. Hough, “Mirror thermal noise in laser interferometer gravitational wave detectors operating at room and cryogenic temperature”, arXiv:0912.0107. https://arxiv.org/abs/0912.0107
    [136] G. Rempe, R. J. Thompson, and H. J. Kimble, “Measurement of ultralow losses in an optical interferometer”, Opt. Lett. 17, 363 (1992)
    [137] J. Steinlechner, L. Jensen, C. Krüger, N. Lastzka, S. Steinlechner, and R. Schnabel, “Photothermal self-phase-modulation technique for absorption measurements on high-reflective coatings”, Appl. Opt. 51, 1156 (2012).
    [138] I. W. Martin et al., “Comparison of the temperature dependence of the mechanical dissipation in thin films of Ta2O5 and Ta2O5 doped with TiO2”, Class. Quantum Grav. 26, 155012 (2009).
    [139] I. M. Martin, PhD Thesis, University of Glasgow, 2009.
    [140] P. G. Murray, I. W. Martin, K. Craig, J. Hough, R. Robie, and S. Rowan, “Ion-beam sputtered amorphous silicon films for cryogenic precision measurement systems”, Phys. Rev. D 92, 062001 (2015).
    [141] Z. L. Huang and S. Chao private communication
    [142] L. C. Kuo, H. W. Pan, C. L. Chang, and S. Chao, “A low cryogenic mechanical loss composite silica thin film for low thermal noise dielectric mirror coatings”, Opt. Lett. in revision. (LIGO-P1800102)
    [143] http://www.geosci.usyd.edu.au/users/prey/Teaching/Geol-3101/Strain/STRAINd.htm
    [144] http://www.ged.rwth-aachen.de/index.php?cat=Education&subcat=Naxos_Excursion_2014&page=NAXOS_EXCURSION_2014_-_FIELD_REPORTS_-_GROUP_B_-_DAY_2_-_AFTERNOON
    [145] R. Birney, et al., “Exploring the fundamental limits of NIR absorption in amorphous silicon”, article in preparation (LIGO-P1800148).
    [146] K. Craig, et al., “Expanding the gravitational wave detection band to low frequencies: a coating solution for the cryogenic Einstein Telescope” article in preparation, (LIGO-P1800241).
    [147] M. L. Gorodetsky, “Thermal noises and noise compensation in high-reflection multilayer coating”, Phys. Lett. A, 372, 6813 (2008)
    [148] B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium”, Proc. SPIE 6273, 62732J (2006)
    [149] J. S. Custer, Michael O. Thompson, D. C. Jacobson, J. M. Poate, S. Roorda, W. C. Sinke, and F. Spaepen, “Density of amorphous Si”, Appl. Phys. Lett. 64, 437 (1994)

    QR CODE