簡易檢索 / 詳目顯示

研究生: 黃本軒
Huang, Ben-Syuan
論文名稱: 基於非監督式CRF模型之異常行為偵測
Abnormal Behavior Detection Using CRF Model with Unsupervised Learning
指導教授: 黃仲陵
Huang, Chung-Lin
口試委員: 莊仁輝
Chuang, Jen-Hui
黃仲陵
Huang, Chung-Lin
曾定章
Tseng, Din-Chang
黃文吉
Huang, Wen-Chi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 48
中文關鍵詞: 條件式隨機場異常行為不正常
外文關鍵詞: CRF, Abnormal Behavior, Unusual
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 迄今,視覺監控系統已經廣泛地應用於各種場合中,例如公共安全、高樓住宅安檢、家庭即時看護等。隨著生活變得繁忙,越來越多的人們開始獨居生活,因此,為了能夠在意外發生時能夠迅速請求他人協助,家庭的即時看護系統就變得相當重要。然而,傳統的監視系統必須耗費大量的時間與人力去觀察監視畫面的每一片段, 並不符合現今社會的需要,所以,一套基於自動居家看護的視覺監控系統就成了近年來重要的研究課題之一。
    但是,異常的行為(例如跌倒、疾病發作…等)往往都是一些稀有而且無法預測的事件,很難事先用特定的統計模型來擬合。為了能夠處理這樣的問題,現存許多文獻的做法是改成幫所有正常的行為建立一個統計模型,一旦輸入的小段影像經過此模型的判定發現機率小於一定閥值,就把此小段影像視為異常發生的片段。基於此,我們事先定義常常重複出現的動作都屬於正常行為的範疇內,而異常行為則不屬於此範疇。再利用上述的方式,為此正常行為的集合建立一個統計模型,用以辨識出所有不屬於此集合的異常行為。
    為了建立出較有效率的模型,我們選擇使用條件式隨機場(Conditional Random Field,簡稱CRF)作為統計模型。此模型的好處在於可以在global上統計出所有觀測值序列,狀態間彼此的轉移次數。因此針對所有我們定義正常的行為,只需要建立一個CRF模型,就可依據此來判定新輸入的影片,位於哪些段落上是異常的行為。


    第一章 緒論 1.1 動機 1.2 相關研究 1.3 系統流程 第二章 特徵萃取 2.1 運動資訊 2.2 Hu moments 第三章 N-cut分群法 3.1 Bi-Cut 演算法 3.2 N-cut 3.3特徵的標籤 第四章 統計模型 4.1 條件式隨機場 4.2 條件式隨機場模型架構 4.3訓練CRF模型的參數 第五章 實驗結果 第六章 結論 參考資料

    [1] C. Huang, B. Wu, and R. Nevatia, "Robust Object Tracking by Hierarchical Association of Detection Responses", in Proc. ECCV, 2008, pp.788-801.

    [2] C. Beleznai and H. Bischof, "Fast human detection in crowded scenes by contour integration and local shape estimation", in Proc. CVPR, 2009, pp.2246-2253.

    [3] J. Xing, H. Ai, and S. Lao, "Multi-object tracking through occlusions by local tracklets filtering and global tracklets association with detection responses ", in Proc. CVPR, IEEE, 2009 , pp. 1200-1207 .

    [4] R. Mehran, A. Oyama, and M. Shah, "Abnormal crowd behavior detection using social force model", in Proc. CVPR, 2009, pp.935-942.

    [5] L. Kratz, and K. Nishino, "Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models", in Proc. CVPR, 2009, pp.1446-1453.

    [6] A. Basharat, A. Gritai, and M. "Shah Learning object motion patterns for anomaly detection and improved object detection", in Proc. CVPR, IEEE, Jan-2008.

    [7] F. Nater, H. Grabner, T. Jaeggli, and L.G. Van, ''Tracker trees for unusual event detection'', 9th IEEE international workshop on visual surveillance, held in conjunction with ICCV 2009, October 3, 2009, Kyoto, Japan.

    [8] A.Y. Ng, M.I. Jordan and Y. Weiss, "On Spectral Clustering: Analysis and an algorithm", Advances in Neural Information Processing Systems (NIPS),14, 2002.

    [9] N.M. Oliver, B. Rosario, and A.P. Pentland, "A Bayesian Computer Vision System for Modeling Human Interactions", IEEE Transactionson Pattern Analysis and Machine Intelligence, Vol.22, pp. 831 -843, 2000.

    [10] J. Yang, Y. Xu and C.S.Chen, "Human action learning via hidden Markov model", IEEE Transactions on Systems Man and Cybernetics, pp. 34~44, 1997.

    [11] Berthold K. P. Horn and Brian G. Schunck, "Determining optical flow", Artificial Intelligence, vol. 17, no. 1-3, pp. 185--203, 1981.

    [12] Y. Weiss, "Segmentation using eigenvectors: a unifying view", Proceedings IEEE International Conference on Computer Vision, pp. 975-982 (1999).

    [13] I. S. Dhillon. "Co-clustering documents and words using bipartite spectral graph partitioning", In ACM SIGKDD International Conference on Knowledge discovery and data mining, pages 269–274, San Francisco, August 2001.

    [14] J. Lafferty, A. McCallum, F. Pereira, "Conditional random fields: Probabilistic models for segmenting and labeling sequence data". In Proc. the International Conference on Machine Learning, Williamstown, USA, Jun. 28-Jul. 1, 2001, pp.282-289.

    [15] J. Shi and J. Malik, "Normalized Cuts and Image Segmentation", IEEE Conference on Computer Vision and Pattern Recognition,1997 , pp 731-737

    [16] I. S. Dhillon. "Co-clustering documents and words using bipartite spectral graph partitioning", In ACM SIGKDD International Conference on Knowledge discovery and data mining, pp. 269–274, San Francisco, August 2001.

    [17] C. C. Chang and C. J. Lin, LIBSVM -- A Library for Support Vector Machines, http://www.csie.ntu.edu.tw/~cjlin/libsvm/

    [18] ViSOR database , http://www.openvisor.org

    [19] M. K. Hu, "Visual Pattern Recognition by Moment Invariants", IRE Trans. Info. Theory, vol. IT-8, pp.179–187, 1962.

    [20] L. Rabiner. "A tutorial on Hidden Markov Models and selected applications in speech recognition", In Proc. IEEE, 77(2):257–286, 1989.

    [21] V. Mahadevan, W. Li, V. Bhalodia, and N. Vasconcelos. "Anomaly Detection in Crowded Scenes", In Proc. IEEE CVPR, June 2010.

    [22] C. Sminchisescu, A. Kanaujia, Z. Li, D. Metaxas, "Conditional Models for Contextual Human Motion Recognition", In ICCV, Oct. 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE