研究生: |
黃于倫 Huang Yu-Lun |
---|---|
論文名稱: |
二胺基吡啶配基之鈮、鉻雙金屬錯合物的結構與化性研究 Chemistry of Low-Coordinate Dinuclear Transition Metal Complexes Supported by Pyridyl Diamides: Syntheses and Reactivity |
指導教授: |
蔡易州
Yi-Chou Tsai |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 122 |
中文關鍵詞: | 鈮雙金屬錯合物 、鉻雙金屬錯合物 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們利用二胺基吡啶配基,Me[N2N]2- (2,6-bis(trimethylsilylamido)pyridine)與鈮的氯化物NbCl3(DME) (DME = H3COCH2CH2OCH3)反應,可以得到具有較短鈮-鈮雙鍵的低配位低氧化態錯合物Nb2(mu-Me[N2N])3 (1),接著,我們將1與二氯化錫反應可以得到(ClNb)(mu-Me[N2N])3(Nb) (2)。另一方面,我們將具有高反應性鈮-鈮雙鍵的1與有機疊氮化合物反應,當1與MesN3 (Mes = 2,4,6-Me3C6H2)反應可以得到(MesN3Nb)2(mu-Me[N2N])3 (3),另外將1與Me3SiN3反應可以得到亞胺基鈮錯合物(TMSNNb)2(mu-Me[N2N])3 (4) (TMS = Me3Si)與另一個有趣的產物,(TMSNNb)(mu-Me[N2N])2(mu-Me[NNN])(NbN3) (5)。另一方面,我們將1與氧族小分子(氧、硫、硒、碲)反應,也可以得到一系列有趣的錯合物,我們將1分別與硫、硒、碲反應可以得到主要產物為(ENb)2(mu-Me[N2N])3 (E = S, 7; Se, 8; Te,10)與次要產物為(SeNb)(mu-Me[N2N])2(mu-Me[NNN])(Nb) (9),如將1與氧化吡啶(Pyridine N-oxide)反應可以進行氧原子的轉移而得到(ONb)2(mu-Me[N2N])3 (6)。
我們也利用立體阻礙較大的二胺基吡啶配基,Li2t-BuPh2[N2N] (t-BuPh2[N2N] = 2,6-bis(tert-butyldiphenylsilylamido)pyridine)、Li2i-Pr[N2N] (i-Pr[N2N] = 2,6-bis(triisopropylsilylamido)pyridine)與兩價釩(VCl2(THF)4、VCl2(TMEDA)2 (TMEDA = N,N,N',N'-tetramethylethylenediamine))反應。將Li2t-BuPh2[N2N]與0.5或1當量VCl2(THF)4反應分別可以得到[(THF)V](mu-t-BuPh2[N2N])2(Na) (11)、[(THF)2V]2(mu-t-BuPh2[N2N])(mu-Cl)2 (12),將Li2i-Pr[N2N]與一當量VCl2(TMEDA)2反應可以得到[(TMEDA)V]2(mu-i-Pr[N2N])(mu-Cl)2 (13),12、13都是具有釩-釩單鍵的雙釩金屬錯合物。
除了第五族過渡金屬外,我們也將配基與第六族過渡金屬反應。首先,我們將Li2Me[N2N]與氯化亞鉻反應,因為立體阻礙太小,因此我們得到了四個鉻與一個氯組成的五員環錯合物Cr4(mu-Me[N2N])3(Me[NNNH])(mu-Cl) (14),將14還原(用一當量KC8)可以得到四個鉻形成四員環的錯合物Cr4(mu-Me[N2N])4 (15),我們改用立體阻礙較大的配基,Li2t-BuMe2[N2N] (t-BuMe2[N2N] = 2,6-bis(tert-butyldimethylsilylamido)pyridine)、Li2t-Bu2Me[N2N] (t-Bu2Me[N2N] = 2,6-bis(di-tert-butylmethylsilylamido)pyridine)、Li2i-Pr[N2N]分別與氯化亞鉻反應可以得到[(THF)Cr]2(mu-t-BuMe2[N2N])2 (16)、[(THF)Cr]2(mu- t-Bu2Me[N2N])2 (17)、 [(THF)Cr]2(mu-i-Pr[N2N])2 (18),如果與氯化鉻反應則可得到[(THF)2LiCl2Cr]2(mu-i-Pr[N2N])(mu-Cl)2 (21)、[(THF)ClCr]2(mu-t-BuPh2[N2N])(mu-Cl)2 (22),另一方面,我們將18與一當量還原劑(KC8)及皇冠醚(18-crown-6 ether)反應可以得到很特別的鉻(Ⅱ)、鉻(I)的雙鉻錯合物{Cr2(mu-i-Pr[N2N])2}[K(18-crown-6 ether)(THF)2] (19),接著,將19與硒反應則可以得到Cr25+,混合價數的雙鉻錯合物{Cr2(mu-i-Pr[N2N])2(mu-Se)}[K(18-crown-6 ether)(THF)2] (20),硒原子橋接在兩個鉻之間,三者形成一個三員環的結構。
另一方面,我們改用另一種二胺基吡啶配基,Li2dipp[N2N] (dipp[N2N] = (2,6-bis(diisopropylphenylamido)-4-methylpyridine)),與氯化亞鉻反應可以得到Cr(□-dipp[N2N])2[Cr(Et2O)] (23),將23與一當量還原劑(KC8)及皇冠醚(18-crown-6 ether)反應,可以得到結構與19相似的錯合物{Cr2(mu-dipp[N2N])2}[K(18-crown-6 ether)(Et2O)] (24),有趣的是,如果將23與三當量的還原劑(KC8)反應則可以得到鉻(I)-鉻(I)的鉻-鉻五鍵錯合物{Cr2(mu-dipp[N2N])2}(K2) (25)。
接著,我們將配基與WCl3(DME)反應可以得到一系列鎢三價的錯合物,W2(mu-Me[N2N])3 (26)、(ClW)2(mu-t-BuMe2[N2N])2 (27)、(ClW)2(mu-i-Pr[N2N])2 (28),這些錯合物都具有鎢-鎢三鍵。
我們還將配基與第七族的過渡金屬起始物反應,將Li2t-BuPh2[N2N]與二氯化錳反應,可以得到Mn2(mu-t-BuPh2[N2N])2 (29),兩個錳原子之間沒有鍵結,接著,我們將29與苯甲腈反應可以得到[(PhCN)Mn]2(mu-t-BuPh2[N2N])2 (30),兩個苯甲腈接在錳上,兩個錳原子之間沒有鍵結。
我們利用X-ray單晶繞射分析,元素分析,核磁共振光譜等方法確定其結構。
A novel trivalent diniobium(III) complex supported by three bulky pyridyl diamido ligands Me[N2N]2- (Me[N2N] = 2,6-bis(trimethylsilylamido)pyridine) is prepared. The reaction between NbCl3(DME) (DME = H3COCH2CH2OCH3) and Li2Me[N2N] yields the title compound Nb2(mu-Me[N2N])3 (1). Reaction of 1 with SnCl2 produecs (ClNb)(mu-Me[N2N])3(Nb) (2). Treatment of 1 with TMSN3 (TMS = Me3Si), a major product, symmetric bisimido complex (TMSNNb)2(mu-Me[N2N])3 (4), and a minor product, asymmetric azido imido complex (TMSNNb)(mu-Me[N2N])2(mu-Me[NNN])(NbN3) (5) are obtained. A symmetric bis(mesityl azido) complex (MesN3Nb)2(mu-Me[N2N])3 (3) (Mes = 2,4,6-Me3C6H2) is obtained when 1 is treated with MesN3. Upon treatment of 1 with S, Se and Te gives rise to the formations of niobium(V) chalcogenide (ENb)2(mu-Me[N2N])3 (E = S, 7; Se, 8; Te,10) and (SeNb)(mu-Me[N2N])2(mu-Me[NNN])(Nb) (9) as respective major and minor products, concomitant with the rupture of the Nb=Nb double bond. Moreover, 1 can also be doubly oxygenated via an oxygen atom transfer from pyridine N-oxide to produce (ONb)2(mu-Me[N2N])3 (6). The Nb=Nb double bond of 1 can also be split upon addition of organic azides.
Treatment of VCl2(THF)4 with Li2t-BuPh2[N2N] (t-BuPh2[N2N] = 2,6-bis(tert-butyldiphenylsilylamido)pyridine) gives [(THF)V](mu-t-BuPh2[N2N])2(Na) (11) or [(THF)2V]2(mu-t-BuPh2[N2N])(mu-Cl)2 (12), but, on the other hand, reaction of VCl2(TMEDA)2 (TMEDA = N,N,N',N'-tetramethylethylenediamine) with Li2i-Pr[N2N] (i-Pr[N2N] = 2,6-bis(triisopropylsilylamido)pyridine) gives rise to [(TMEDA)V]2(mu-i-Pr[N2N])(mu-Cl)2 (13).
Interestingly, the reaction of CrCl2 with Li2Me[N2N] produces Cr4(mu-Me[N2N])3(Me[NNNH])(mu-Cl) (14), in which the core structure is a five-member ring. The addition of KC8 to 14 leads the isolation of Cr4(mu-Me[N2N])4 (15), in which the Cr metal core forms a four-member ring. The reaction of CrCl2 with more sterically hindered ligands Li2t-BuMe2[N2N] (t-BuMe2[N2N] = 2,6-bis(tert-butyldimethylsilylamido)pyridine), Li2t-Bu2Me[N2N] (t-Bu2Me[N2N] = 2,6-bis(di-tert-butylmethylsilylamido)pyridine), Li2i-Pr[N2N] produces [(THF)Cr]2(mu-t-BuMe2[N2N])2 (16), [(THF)Cr]2(mu- t-Bu2Me[N2N])2 (17), [(THF)Cr]2(mu-i-Pr[N2N])2 (18). Complexes 16, 17, 18 are similar in structures. Treament of Li2i-Pr[N2N] with CrCl3 produces [(THF)2LiCl2Cr]2(mu-i-Pr[N2N])(mu-Cl)2 (21). Furthermore, the reaction of 18 with KC8 in the presence of 18-crown-6 ether proudces a mixed-valence complex {Cr2(mu-i-Pr[N2N])2}[K(18-crown-6 ether)(THF)2] (19). Interestingly, treatment of 19 with Se gives a mixed-valence Cr25+ complex, {Cr2(mu-i-Pr[N2N])2(mu-Se)}[K(18-crown-6 ether)(THF)2] (20). Reaction of the bulkier ligand Li2dipp[N2N] and CrCl2 leads to the isolation of Cr(mu-dipp[N2N])2[Cr(Et2O)] (23). Treatment of 23 with KC8 and 18-crown-6 ether produces a mixed-valence Cr23+ complex {Cr2(mu-dipp[N2N])2}[K(18-crown-6 ether)(Et2O)] (24). Noteworthy is reduction of 23 with more than 3eq of KC8 produces a quintuply-bonded Cr22+ complexes {Cr2(mu-dipp[N2N])2}(K2) (25) with two K atoms embedded by phenyl rings and nitrogen atoms.
Treatment of Li2R[N2N] with WCl3(DME) gives a series of tungsten complexes, W2(mu-Me[N2N])3 (26), (ClW)2(mu-t-BuMe2[N2N])2 (27), (ClW)2(mu-i-Pr[N2N])2 (28); all of them display W-W triple bonds.
Furthermore, the reaction of MnCl2 and Li2t-BuPh2[N2N] leads to the isolation of Mn2(mu-t-BuPh2[N2N])2 (29). Treatment of 29 with PhCN produces [(PhCN)Mn]2(mu-t-BuPh2[N2N])2 (30).
All complexes presented are fully characterized by multi-nuclear NMR spectroscopy and X-ray diffraction.
(1) Cotton, F. A.; Murillo, C. A.; Walton, R. A. Multiple Bonds Between Metal Atom; 3rd. ed.; Springer Science and Business Media, Inc.,2005.: New York, 1993.
(2) Brosset, C. Nature 1935, 135, 874.
(3) Cotton, F. A.; Mague, J. T. Proc. Chem. Soc. 1964, 233.
(4) Cotton, F. A.; Lippard, S. J. J. Am. Chem. Soc. 1964, 86, 4497.
(5) Cotton, F. A.; Lippard, S. J.; Mague, J. T. Inorg. Chem. 1965, 4, 508.
(6) Cotton, F. A.; Curtis, N. F.; Harris, C. B.; Johnson, B. F. G.; Lippard, S. J.; Mague, J. T.; Robinson, W. R.; Wood, J. S. Science 1964, 145, 1305-1307.
(7) Cotton, F. A.; Harris, C. B. Inorg. Chem. 1965, 4, 330.
(8) Lawton, D.; Mason, R. J. Am. Chem. Soc. 1965, 87, 921.
(9) Chisholm, M. H.; Cotton, F. A.; Frenz, B. A.; Reichert, W. W.; Shive, L. W.; Stultslb, B. R. J. Am. Chem. Soc. 1976, 98, 4469-4476.
(10) Chisholm, M. H.; Reichert, W. J. Am. Chem. Soc. 1974, 96, 1249-1251.
(11) Nocera, D. G.; Manke, D. R.; Loh, Z.-H. Inorg. Chem. 2004, 43, 3618-3624.
(12) Tsai, Y. C.; Lin, Y. M.; Yu, J. S. K.; Hwang, J. K. J. Am. Chem. Soc. 2006, 128, 13980-13981.
(13) Power, P. P.; Nguyen, T.; Sutton, A. D.; Brynda, M.; Fettinger, J. C.; Long, G. J. Science 2005, 310, 844-847.
(14) Aggarwal, V. K.; Alonso, E.; Hynd, G.; Lydon, K. M.; Palmer, M. J.; Porcelloni, M.; Studley, J. R. J. Am. Chem. Soc. 2001, 40, 1430-1433.
(15) Stoltz, B. M.; May, J. A. J. Am. Chem. Soc. 2002, 124, 12426-12427.
(16) Ohe, K.; Uemura, S.; Kato, Y.; Miki, K.; Nishino, F. Org. Lett. 2003, 5, 2619-2621.
(17) Kobayashi, S.; Yamashita, Y.; Salter, M. M.; Aoyama, K. Angew. Chem. Int. Ed. 2006, 45, 3816-3819.
(18) Cloke, F. G. N.; Clentsmith, G. K. B.; Bates, V. M. E.; Hitchcock, P. B. J. Am. Chem. Soc. 1999, 121, 10444-10445.
(19) Green, J. C.; Bates, V. M. E.; Clentsmith, G. K. B.; Cloke, F. G. N.; Jenkin, H. D. L. Chem. Commun. 2000, 927-928.
(20) Gambarotta, S.; Berno, P. Organometallics 1995, 14, 2159-2161.
(21) Floriani, C.; Cerosa, A. Z.; Solari, E.; Giannini, L.; Villa, A. C.; Rizzoli, C. J. Am. Chem. Soc. 1998, 120, 437-438.
(22) Floriani, C.; Casellli, A.; Solari, E.; Scopelliti, R. J. Am. Chem. Soc. 1999, 121, 8296-8305.
(23) Floriani, C.; Caselli, A.; Solari, E.; Scpelliti, R. J. Am. Chem. Soc. 2000, 122, 538-539.
(24) Kawaguchi, H.; Akagi, F.; Matsuo, T. Angew. Chem. Int. Ed. 2007, 46, 8778-8781.
(25) Piro, N. A.; Figueroa, J. S.; McKellar, J. T.; Cummins, C. C. Science 2006, 313, 1276-1279.
(26) Cossairt, B. M.; Cummins, C. C. Angew. Chem. Int. Ed. 2008, 47, 169-172.
(27) Parkin, G. Prog. Inorg. Chem. 1998, 47, 1.
(28) Cummins, C. C.; Figueroa, J. S. J. Am. Chem. Soc. 2003, 125, 4020-4021.
(29) Pedersen, S. F.; Roskamp, E. J. J. Am. Chem. Soc. 1987, 109, 6551-6553.
(30) Floriani, C.; Caselli, A.; Solari, E.; Scopelliti, R.; Re, N.; Rizzoli, C.; Chiesi-Villa, A. J. Am. Chem. Soc. 2000, 122, 3652-3670.
(31) Kraatz, H.-B.; Boorman, P. M. Coord. Chem. Rev. 1995, 143, 35-69.
(32) Collman, J. P.; Boulatov, R. Angew. Chem. Int. Ed. 2002, 41, 3948-3961.
(33) Bergman, R. G.; Proulx, G. J. Am. Chem. Soc. 1995, 117, 6382-6383.
(34) Bergman, R. G.; Proulx, G. Organometallics 1996, 15, 684-692.
(35) Cenini, S.; Gallo, E.; Caselli, A.; Ragaini, F.; Fantauzzi, S.; Piangiolino, C. Coord. Chem. Rev. 2006, 250, 1234-1253.
(36) Meyer, K.; Castro-Rodriguez, I.; Nakai, H. Angew. Chem. Int. Ed. 2006, 45, 2389-2392.
(37) Kim, B. J.; Park, J. W.; Koo, S. M. Polyhedron 2001, 20, 2279-2284.
(38) Sestan, M.; Peric, B.; Giester, G.; Planinic, P.; Brnicevic, N. Struct. Chem. 2005, 16, 409-414.
(39) Bessler, K. E.; Serafim, M. J. S.; Lemos, S. S.; Sales, M. J. A. Trans. Metal Chem. 2007, 32, 112-116.
(40) Chivers, T.; Maaninen, T.; Laitinen, R.; Schatte, G.; Nissinen, M. Inorg. Chem. 2000, 39, 5341-5347.
(41) Engman, L.; Persson, J. Organometallics 1993, 12, 1068-1071.
(42) Mindiola, D. J.; Kilgore, U. J.; Yang, X.; Tomaszewski, J.; Huffman, J. C. Inorg. Chem. 2006, 45, 10712-10721.
(43) Fujihara, T.; Kakeya, M.; Kasaya, T.; Nagasawa, A. Organometallics 2006, 25, 4131-4137.
(44) Wolczanski, P. T.; Kleckley, T. S.; Bennett, J. L.; Lobkovsky, E. B. J. Am. Chem. Soc. 1997, 119, 247-248.
(45) Tsai, Y.-C.; Wang, P.-Y.; Chen, S.-A.; Chen, J.-M. J. Am. Chem. Soc. 2007, 129, 8066-8067.
(46) Ferguson, R.; Solari, E.; Floriani, C.; Osella, D.; Ravera, M.; Re, N.; Chiesi-Villa, A.; Rizzoli, C. J. Am. Chem. Soc. 1997, 119, 10104-10115.
(47) P.Power, P.; Wolf, R.; Brynda, M.; Ni, C.; Long, G. J. J. Am. Chem. Soc. 2007, 129, 6076-6077.
(48) Power, P. P.; Nguyen, T.; Panda, A.; Olmstead, M. M.; Richards, A. F.; Stender, M.; Brynda, M. J. Am. Chem. Soc. 2005, 127, 8545-8552.
(49) Nocera, D. G.; Pistorio, B. J. J. Photochem. Photobiol. A: Chem. 2004, 162, 563-567.
(50) Nocera, D. G.; Macintosh, A. M. Inorg. Chem. 1996, 35, 7134-7139.
(51) Lobbia, G. G.; Bonati, F.; Cecchi, P.; Lorenzotti, A.; Pettinari, C. J. Organomet. Chem. 1991, 403, 317-323.
(52) Mashima, K.; Tani, K.; Oshiki, T.; Kawamura, S. i.; Kitaura, K. Bull. Chem. Soc. Jpn. 2000, 73, 1735-1748.
(53) Bailey, P. Chem. Eur. J. 2003, 9, 4820-4828.
(54) Cotton, F. A.; Daniels, L. M.; Murillo, C. A. Angew. Chem. Int. Ed. 1992, 31, 737-738.
(55) Edema, J. J. H.; Stauthamer, W.; van Bolhuis, F.; Gambarotta, S.; Smeets, W. J. J.; Spek, A. L. Inorg. Chem. 1990, 29, 1302-1306.
(56) Armarego, W. L. F.; Chai, C. L. L. Purification of Laboratory Chemicals; 5th. ed.; Butterworth-Heinemann 2003.
(57) Bogdanovic, B.; Schlichte, K.; Westeppe, U. Chem. Ber. 1988, 121, 27-32.