簡易檢索 / 詳目顯示

研究生: 黃玟瑀
Huang, Wen-Yu
論文名稱: 應用於行動裝置之可撓曲微型直接甲醇燃料電池
Bendable PDMS-based Mini-Direct Methanol Fuel Cell for Portable Devices
指導教授: 曾繁根
Tseng, Fan-Gang
王本誠
Wang, Pen-Cheng
口試委員: 葉宗洸
Yeh, Tsung-Kuang
薛康琳
Hsueh, Kan-Lin
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 92
中文關鍵詞: 直接甲醇燃料電池可撓曲可攜式
外文關鍵詞: DMFC, PDMS, bendable
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 直接甲醇燃料電池(Direct Methanol Fuel Cell, DMFC)是以甲醇做為燃料,將甲醇之化學能轉換成電能,相較於以氫氣作為燃料的質子交換膜燃料電池 (Proton Exchange Membrane Fuel Cell, PEMFC),DMFC的甲醇燃料擁有相對高的體積能量密度,並且在常溫常壓下為液體,容易保存與攜帶,非常適合應用於個人攜帶式裝置的電源供應。
    本研究主要發展應用於個人行動裝置的微型可撓曲直接甲醇燃料電池,並且針對其封裝技術進行改善,首先採用聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)作為DMFC的主要結構使其擁有可撓曲之性質,利用PDMS翻模技術,製作出流道板,與製作完成的膜電極組組合後,再以PDMS包覆灌模的方式,將流道板以及膜電極組包覆在可撓曲的PDMS之內,以達到封裝及防漏的效果。
    膜電極組製作的部分,陽極與陰極分別噴塗 1 mg 的Pt-Ru/C與Pt/C觸媒後,與質子交換膜(Nafion® 117)進行熱壓。在微型可撓曲直接甲醇燃料電池單電池測試中,陽極使用 1 M的甲醇做為燃料,陰極採用自然進氣,在平放的狀況下,最高發電功率可達6.64 mW,其開路電位為0.541V,在曲率半徑分別為2英吋與1英吋的情況下,最高發電功率分別為7.17 mW與8.05 mW,開路電位分別為0.536 V與0.551 V。
    本研究也對電池做各種測試以及改善、研究刮刀製程並在碳布上添加微孔層應用於本研究的電池當中進行各項測試,以利未來將觸媒乘載量提高。本研究也嘗試將電池進行實際應用,在配合升壓模組後,串聯兩顆單電池可以成功的推動電子錶持續約4小時。


    DMFC (Direct Methanol Fuel Cell) uses methanol as the fuel that converts the chemical energy of methanol into electrical energy. Compared with PEMFC (Proton Exchange Membrane Fuel Cell) using hydrogen as the fuel, methanol has relatively high volumetric energy density than hydrogen and is liquid at normal temperature and pressure. It is easy to store and carry. These unique properties make DMFC ideal for powering personal portable devices.
    This research mainly develops the micro flexible DMFC used in personal mobile devices, and improves its packaging technology. Firstly, polydimethylsiloxane (PDMS) is used as the main structure of DMFC so that it has flexible nature. Secondly, use of PDMS molding technology to produce anode flow channel plate and then PDMS cladding filling mode, the flow channel plate and the MEA can be coated in the PDMS in order to achieve the effect of sealing.
    MEA is fabricated by hot pressing the proton exchange membrane (Nafion® 117) by coding 1 mg of Pt-Ru/C and Pt/C catalyst separately on the anode and the cathode.
    In the micro flexible DMFC test, the anode using 1 M of methanol as the fuel, the cathode with natural gas in the flat state, the maximum power up to 6.64 mW with an OCV of 0.541V and a maximum power yield of 7.17 mW and 8.05 mW at a radius of curvature of 2 inches and 1 inch respectively. The OCV were 0.536 V and 0.551 V, respectively.

    摘要 ii Abstract iii 致謝 v 總目錄 vi 圖目錄 xi 表目錄 xv 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 2 第二章 文獻回顧 5 2.1燃料電池簡介 5 2.2直接甲醇燃料電池 7 2.3直接甲醇燃料電池結構 8 2.3.1質子交換膜(Proton Exchange Membrane) 8 2.3.2 觸媒層(Catalyst Layer, CL) 10 2.3.3 氣體擴散層(Gas Diffusion Layer, GDL) 11 2.3.4 微孔層(Microporous layer) 12 2.3.5 單雙極板(Unipolar & Bipolar Plate) 12 2.3.6周邊輔助系統(Balance of Plant, BOP) 13 2.4直接甲醇燃料電池工作原理 13 2.5直接甲醇燃料電池之極化現象 15 2.5.1甲醇穿越(Methanol Crossover) 16 2.5.2活性極化(Active Polarization) 16 2.5.3歐姆極化(Ohmic Polarization) 17 2.5.4濃度極化(Concentration Polarization) 17 2.6被動式直接甲醇燃料電池 18 2.7可撓曲燃料電池 18 2.8流道設計對效能之影響 21 2.9電流蒐集層設計對電池效能之影響 23 2.10直接甲醇燃料電池之實際應用 24 第三章 實驗方法 26 3.1實驗藥品與耗材 26 3.2實驗設備 27 3.3實驗步驟 28 3.4實驗原理 28 3.4.1電子槍蒸鍍系統 (E-bean) 28 3.4.2 反應離子蝕刻機 (RIE) 28 3.4.3掃描式電子顯微鏡 (SEM) 29 3.4.4 燃料電池測試機台 29 3.5噴塗塗佈以及其觸媒漿料的配製 29 3.6刮刀塗佈以及微孔層、觸媒漿料的配製 31 3.6.1刮刀塗佈 31 3.6.2微孔層的漿料配製及塗佈 32 3.6.3觸媒層的漿料配製及塗佈 33 3.7微孔層及觸媒層之爐管燒結 33 3.7.1微孔層之燒結 34 3.7.2觸媒層之燒結 34 3.8單電池測試 34 3.8.1膜電極組(Membrane Electrode Assembly) 36 3.8.2膜電極組壓合 36 3.8.3單電池極化掃描 37 3.9 包覆灌模PDMS單電池製作與測試 37 3.9.1壓克力模組設計 39 3.9.2 PDMS陽極流道板的製作 40 3.9.3 PDMS單電池膜電極組的壓合 41 3.9.4 膜電極組的邊緣熱壓 41 3.9.5 包覆灌模 42 3.9.6 PDMS單電池極化掃描 44 第四章 結果與討論 45 4.1包覆灌模 46 4.1.1陽極流道板 46 4.1.2膜電極組製作 46 4.1.3包覆灌模 47 4.1.4熱壓封裝測試 48 4.2 Nafion®邊緣熱壓封裝 50 4.3單電池測試 54 4.3.1不同測試方向對單電池效能之影響 55 4.3.2不同撓曲程度對單電池效能之影響 56 4.4循環彎曲測試 59 4.5長效測試 60 4.6濃度測試 61 4.7膜電極組封裝改善測試 63 4.8刮刀塗佈測試 65 4.8.1短效測試 66 4.8.2濃度測試 68 4.8.3長效測試 69 4.9刮刀塗佈微孔層 70 4.9.1短效測試 71 4.9.2長效測試 73 4.10單電池觸媒乘載量之提升 76 4.10.1重複堆疊法 76 4.10.2雙倍厚度之線棒 78 4.10.3 80%之Pt-Ru/C觸媒 81 4.11可撓曲微型直接甲醇燃料電池的實際應用 82 第五章 結論 85 第六章 未來工作 87 參考文獻 88

    [1] Mark A. J. Huijbregts, Linda J. A. Rombout, Stefanie Hellweg, Rolf Frischknecht, A. Jan Hendriks, Dik van de Meent, Ad M. J. Ragas, Lucas Reijnders, and Jaap Struijs, Is Cumulative Fossil Energy Demand a Useful Indicator for the Environmental Performance of Products: Policy Analysis, Vol 40, pp 641–648, 2006.
    [2] S. E. Hosseini, M. A. Wahid, Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development: Renewable and Sustainable Energy Reviews, Vol 57, pp 850-866, 2016.
    [3] R. Padbury et al., Lithium Oxygen batteries Limiting factors that affect performance, Journal of Power Sources, Vol. 196, pp. 4436-4444, 2011.
    [4] K.K. Sam et al., Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review, Renewable and Sustainable Energy Reviews, vol.25, pp. 135-165, 2013.
    [5] R. V. Helmolt, U. Eberle, Fuel cell vehicles: Status 2007, Journal of Power Sources, vol. 165, pp. 833-843, 2007.
    [6] U. Eberle, G. Arnold, R. von Helmolt, Hydrogen storage in metal–hydrogen systems and their derivatives, Journal of Power Sources, vol. 154, pp. 456-460, 2006.
    [7] B. Bogdanovic, Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials, Journal of Alloys and Compounds, pp. 253-254, 1997.
    [8] B. Bogdanovic, Metal-doped sodium aluminium hydrides as potential new hydrogen q storage materials, Journal of Alloys and Compounds, 302, pp. 36-58, 2000.
    [9] A. Manthiram, X. Zhao, W. Li, 11 – Developments in membranes, catalysts and membrane electrode assemblies for direct methanol fuel cells (DMFCs), Functional Materials for Sustainable Energy Applications, pp. 312-369, 2012.
    [10] S.C. Kelley, G.A. Deluga, W.H. Smyrl, Miniature fuel cells fabricated on silicon substrates, AIChE Journal, Vol. 48, pp. 1071-1082, 2002.
    [11] K. Shah, W.C Shin, R.S. Besser, Novel microfacrication approaches for directly patterning PEM fuel cell membranes, Journal of Power Sources, Vol. 123, pp. 172-181, 2003.
    [12] Z.Y. Xiao, G.H. Yan, C.H. Feng, Philip C.H. Chan, I-Ming Hsing, A silicon-based fuel cell micro power system using a micro fabrication technique, Journal of Micromechanics and Microengineering, Vol. 16, pp. 2014-2020, 2006.
    [13] M. Shen, S. Walter, M. A. M. Gijs, Monolithic micro-direct methanol fuel cell in polydimethylsiloxane with microfluidic channel-integrated Nafion strip, Journal of Power Sources, Vol. 193, pp. 761-765, 2009.
    [14] O. Z. Sharaf, M. F. Orhan, An overview of fuel cell technology: Fundamentals and applications, Renewable and Sustainable Energy Reviews, Vol. 32, pp. 810-853, 2014.
    [15] V. Baglio et al., “AC-Impedance Investigation of Different MEA Configurations for Passive-Mode DMFC Mini-Stack Applications,” Fuel Cells, Vol. 10, No. 1, pp.124-131, 2010.
    [16] A. Manthiram, X. Zhao, W. Li, 11 – Developments in membranes, catalysts and membrane electrode assemblies for direct methanol fuel cells (DMFCs), Functional, Functional Materials for Sustainable Energy Applications, pp. 312-369, 2012.
    [17] Ranjan K. Mallick, Shashikant B. Thombre, Naveen K. Shrivastava, A critical review of the current collector for passive direct methanol fuel cells, Journal of Power Sources, Vol. 285, pp. 510-529, 2015.
    [18] Membranes for artificial photosynthesis, SEGURIDAD y Medio Ambiente, 2012.
    [19] L. Carrette, K. A. Friedrich, U. Stimming, Fuel Cells – Fundamentals and Applications, Fuel Cells, Vol. 1, pp. 5-39, 2001.
    [20] B.C. Ong, S.K. Kamarudin*, M.S. Masdar, U.A. Hasran, Applications of graphene nano-sheets as anode diffusion layers in passive direct methanol fuel cells (DMFC), international journal of hydrogen energy 42, pp. 9252-9261, 2017.
    [21] M. Uchida, Y. Aoyama, M. Tanabe, N. Yanagihara, N. Eda, A. Ohta, Influences of Both Carbon Supports and Heat - Treatment of Supported Catalyst on Electrochemical Oxidation of Methanol, Journal of The Electrochemical Society, Vol. 142, pp. 2572-2576, 1995.
    [22] S. Yousefi, M. Zohoor, Conceptual design and statistical overview on the design of a passive DMFC single cell, Hydrogen Energy, Vol. 39, pp. 5972-5980, 2014.
    [23] A. Faghri, Z. Guo, An innovative passive DMFC technology, Applied Thermal Engineering, Vol. 28, pp. 1614-1622, 2008.
    [24] I. H. Chang, M. H. Lee, J.H. Lee, Y. S. Kim, S. W. Cha, Air-breathing Flexible Polydimethylsiloxane (PDMS)-based Fuel Cell, International Journal of Precision Engineering and Manufacturing Vol. 14, No. 3, pp. 501-504, 2013.
    [25] W. J. Lee, An Integrated and Microstructured Flexible Hydrogen Fuel Cell, 2015.
    [26] V. B. Oliveiraa, C. M. Rangel, A. M. F. R. Pintoa, Effect of anode and cathode flow field design on the performance of a direct methanol fuel cell, Chemical Engineering Journal, Vol. 157, pp. 174-180, 2010.
    [27] K. Scott, W. M. Taama, P. Argyropoulos, Material aspects of the liquid feed direct methanol fuel cell, Journal of Applied Electrochemistry, Vol. 28, pp. 1389-1397, 1998.
    [28] K. Tüber, A. Oedegaard, M. Hermann, C. Hebling, Investigation of fractal flow fields in portable proton exchange membrane and direct methanol fuel cells, Journal of Power Sources, Vol. 131, pp.175-181, 2004.
    [29] Y.D. Kuana, J. Y. Chang, S. M. Lee, Experimental investigation of the effect of free openings of current collectors on a direct methanol fuel cell, Journal of Power Sources, Vol. 196, pp. 717-728, 2011.
    [30] J. Y. Sun et al., Hydrothermal synthesis of Pt-Ru/MWCNTs and its electrocatalytic properties for oxidation of methanol, International Journal of Electrochemical Science, Vol. 2, pp. 64-71, 2007.
    [31] S, Thomas et al., Fuel Cells: Green Power, 2006.
    [32] 劉陶鈞,「可撓曲為型直接甲醇燃料電池」,國立清華大學碩士論文,106年。
    [33] L, Feng et al., Fabrication and performance evaluation for a novel small planar passive direct methanol fuel cell stack, Journal of Fuel, Vol. 94, pp. 401-408, 2012.

    QR CODE