研究生: |
黃玟瑀 Huang, Wen-Yu |
---|---|
論文名稱: |
應用於行動裝置之可撓曲微型直接甲醇燃料電池 Bendable PDMS-based Mini-Direct Methanol Fuel Cell for Portable Devices |
指導教授: |
曾繁根
Tseng, Fan-Gang 王本誠 Wang, Pen-Cheng |
口試委員: |
葉宗洸
Yeh, Tsung-Kuang 薛康琳 Hsueh, Kan-Lin |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 直接甲醇燃料電池 、可撓曲 、可攜式 |
外文關鍵詞: | DMFC, PDMS, bendable |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
直接甲醇燃料電池(Direct Methanol Fuel Cell, DMFC)是以甲醇做為燃料,將甲醇之化學能轉換成電能,相較於以氫氣作為燃料的質子交換膜燃料電池 (Proton Exchange Membrane Fuel Cell, PEMFC),DMFC的甲醇燃料擁有相對高的體積能量密度,並且在常溫常壓下為液體,容易保存與攜帶,非常適合應用於個人攜帶式裝置的電源供應。
本研究主要發展應用於個人行動裝置的微型可撓曲直接甲醇燃料電池,並且針對其封裝技術進行改善,首先採用聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)作為DMFC的主要結構使其擁有可撓曲之性質,利用PDMS翻模技術,製作出流道板,與製作完成的膜電極組組合後,再以PDMS包覆灌模的方式,將流道板以及膜電極組包覆在可撓曲的PDMS之內,以達到封裝及防漏的效果。
膜電極組製作的部分,陽極與陰極分別噴塗 1 mg 的Pt-Ru/C與Pt/C觸媒後,與質子交換膜(Nafion® 117)進行熱壓。在微型可撓曲直接甲醇燃料電池單電池測試中,陽極使用 1 M的甲醇做為燃料,陰極採用自然進氣,在平放的狀況下,最高發電功率可達6.64 mW,其開路電位為0.541V,在曲率半徑分別為2英吋與1英吋的情況下,最高發電功率分別為7.17 mW與8.05 mW,開路電位分別為0.536 V與0.551 V。
本研究也對電池做各種測試以及改善、研究刮刀製程並在碳布上添加微孔層應用於本研究的電池當中進行各項測試,以利未來將觸媒乘載量提高。本研究也嘗試將電池進行實際應用,在配合升壓模組後,串聯兩顆單電池可以成功的推動電子錶持續約4小時。
DMFC (Direct Methanol Fuel Cell) uses methanol as the fuel that converts the chemical energy of methanol into electrical energy. Compared with PEMFC (Proton Exchange Membrane Fuel Cell) using hydrogen as the fuel, methanol has relatively high volumetric energy density than hydrogen and is liquid at normal temperature and pressure. It is easy to store and carry. These unique properties make DMFC ideal for powering personal portable devices.
This research mainly develops the micro flexible DMFC used in personal mobile devices, and improves its packaging technology. Firstly, polydimethylsiloxane (PDMS) is used as the main structure of DMFC so that it has flexible nature. Secondly, use of PDMS molding technology to produce anode flow channel plate and then PDMS cladding filling mode, the flow channel plate and the MEA can be coated in the PDMS in order to achieve the effect of sealing.
MEA is fabricated by hot pressing the proton exchange membrane (Nafion® 117) by coding 1 mg of Pt-Ru/C and Pt/C catalyst separately on the anode and the cathode.
In the micro flexible DMFC test, the anode using 1 M of methanol as the fuel, the cathode with natural gas in the flat state, the maximum power up to 6.64 mW with an OCV of 0.541V and a maximum power yield of 7.17 mW and 8.05 mW at a radius of curvature of 2 inches and 1 inch respectively. The OCV were 0.536 V and 0.551 V, respectively.
[1] Mark A. J. Huijbregts, Linda J. A. Rombout, Stefanie Hellweg, Rolf Frischknecht, A. Jan Hendriks, Dik van de Meent, Ad M. J. Ragas, Lucas Reijnders, and Jaap Struijs, Is Cumulative Fossil Energy Demand a Useful Indicator for the Environmental Performance of Products: Policy Analysis, Vol 40, pp 641–648, 2006.
[2] S. E. Hosseini, M. A. Wahid, Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development: Renewable and Sustainable Energy Reviews, Vol 57, pp 850-866, 2016.
[3] R. Padbury et al., Lithium Oxygen batteries Limiting factors that affect performance, Journal of Power Sources, Vol. 196, pp. 4436-4444, 2011.
[4] K.K. Sam et al., Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review, Renewable and Sustainable Energy Reviews, vol.25, pp. 135-165, 2013.
[5] R. V. Helmolt, U. Eberle, Fuel cell vehicles: Status 2007, Journal of Power Sources, vol. 165, pp. 833-843, 2007.
[6] U. Eberle, G. Arnold, R. von Helmolt, Hydrogen storage in metal–hydrogen systems and their derivatives, Journal of Power Sources, vol. 154, pp. 456-460, 2006.
[7] B. Bogdanovic, Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials, Journal of Alloys and Compounds, pp. 253-254, 1997.
[8] B. Bogdanovic, Metal-doped sodium aluminium hydrides as potential new hydrogen q storage materials, Journal of Alloys and Compounds, 302, pp. 36-58, 2000.
[9] A. Manthiram, X. Zhao, W. Li, 11 – Developments in membranes, catalysts and membrane electrode assemblies for direct methanol fuel cells (DMFCs), Functional Materials for Sustainable Energy Applications, pp. 312-369, 2012.
[10] S.C. Kelley, G.A. Deluga, W.H. Smyrl, Miniature fuel cells fabricated on silicon substrates, AIChE Journal, Vol. 48, pp. 1071-1082, 2002.
[11] K. Shah, W.C Shin, R.S. Besser, Novel microfacrication approaches for directly patterning PEM fuel cell membranes, Journal of Power Sources, Vol. 123, pp. 172-181, 2003.
[12] Z.Y. Xiao, G.H. Yan, C.H. Feng, Philip C.H. Chan, I-Ming Hsing, A silicon-based fuel cell micro power system using a micro fabrication technique, Journal of Micromechanics and Microengineering, Vol. 16, pp. 2014-2020, 2006.
[13] M. Shen, S. Walter, M. A. M. Gijs, Monolithic micro-direct methanol fuel cell in polydimethylsiloxane with microfluidic channel-integrated Nafion strip, Journal of Power Sources, Vol. 193, pp. 761-765, 2009.
[14] O. Z. Sharaf, M. F. Orhan, An overview of fuel cell technology: Fundamentals and applications, Renewable and Sustainable Energy Reviews, Vol. 32, pp. 810-853, 2014.
[15] V. Baglio et al., “AC-Impedance Investigation of Different MEA Configurations for Passive-Mode DMFC Mini-Stack Applications,” Fuel Cells, Vol. 10, No. 1, pp.124-131, 2010.
[16] A. Manthiram, X. Zhao, W. Li, 11 – Developments in membranes, catalysts and membrane electrode assemblies for direct methanol fuel cells (DMFCs), Functional, Functional Materials for Sustainable Energy Applications, pp. 312-369, 2012.
[17] Ranjan K. Mallick, Shashikant B. Thombre, Naveen K. Shrivastava, A critical review of the current collector for passive direct methanol fuel cells, Journal of Power Sources, Vol. 285, pp. 510-529, 2015.
[18] Membranes for artificial photosynthesis, SEGURIDAD y Medio Ambiente, 2012.
[19] L. Carrette, K. A. Friedrich, U. Stimming, Fuel Cells – Fundamentals and Applications, Fuel Cells, Vol. 1, pp. 5-39, 2001.
[20] B.C. Ong, S.K. Kamarudin*, M.S. Masdar, U.A. Hasran, Applications of graphene nano-sheets as anode diffusion layers in passive direct methanol fuel cells (DMFC), international journal of hydrogen energy 42, pp. 9252-9261, 2017.
[21] M. Uchida, Y. Aoyama, M. Tanabe, N. Yanagihara, N. Eda, A. Ohta, Influences of Both Carbon Supports and Heat - Treatment of Supported Catalyst on Electrochemical Oxidation of Methanol, Journal of The Electrochemical Society, Vol. 142, pp. 2572-2576, 1995.
[22] S. Yousefi, M. Zohoor, Conceptual design and statistical overview on the design of a passive DMFC single cell, Hydrogen Energy, Vol. 39, pp. 5972-5980, 2014.
[23] A. Faghri, Z. Guo, An innovative passive DMFC technology, Applied Thermal Engineering, Vol. 28, pp. 1614-1622, 2008.
[24] I. H. Chang, M. H. Lee, J.H. Lee, Y. S. Kim, S. W. Cha, Air-breathing Flexible Polydimethylsiloxane (PDMS)-based Fuel Cell, International Journal of Precision Engineering and Manufacturing Vol. 14, No. 3, pp. 501-504, 2013.
[25] W. J. Lee, An Integrated and Microstructured Flexible Hydrogen Fuel Cell, 2015.
[26] V. B. Oliveiraa, C. M. Rangel, A. M. F. R. Pintoa, Effect of anode and cathode flow field design on the performance of a direct methanol fuel cell, Chemical Engineering Journal, Vol. 157, pp. 174-180, 2010.
[27] K. Scott, W. M. Taama, P. Argyropoulos, Material aspects of the liquid feed direct methanol fuel cell, Journal of Applied Electrochemistry, Vol. 28, pp. 1389-1397, 1998.
[28] K. Tüber, A. Oedegaard, M. Hermann, C. Hebling, Investigation of fractal flow fields in portable proton exchange membrane and direct methanol fuel cells, Journal of Power Sources, Vol. 131, pp.175-181, 2004.
[29] Y.D. Kuana, J. Y. Chang, S. M. Lee, Experimental investigation of the effect of free openings of current collectors on a direct methanol fuel cell, Journal of Power Sources, Vol. 196, pp. 717-728, 2011.
[30] J. Y. Sun et al., Hydrothermal synthesis of Pt-Ru/MWCNTs and its electrocatalytic properties for oxidation of methanol, International Journal of Electrochemical Science, Vol. 2, pp. 64-71, 2007.
[31] S, Thomas et al., Fuel Cells: Green Power, 2006.
[32] 劉陶鈞,「可撓曲為型直接甲醇燃料電池」,國立清華大學碩士論文,106年。
[33] L, Feng et al., Fabrication and performance evaluation for a novel small planar passive direct methanol fuel cell stack, Journal of Fuel, Vol. 94, pp. 401-408, 2012.