簡易檢索 / 詳目顯示

研究生: 李宗霖
Lee, Tsung Lin
論文名稱: 奈米碳管海綿氣體偵測器之製作與性質研究
On the Fabrication and characterization of carbon nanotube sponges gas sensor
指導教授: 張士欽
Chang, Shih Chin
徐文光
Hsu, Wen Kuang
口試委員: 陳豐彥
葉安洲
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 41
中文關鍵詞: 奈米碳管氣體偵測器奈米碳管海綿
外文關鍵詞: carbon nanotube, gas sensor, carbon nanotube foam
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究運用酸化的多壁奈米碳管(MWCNT)來製備新一代的氣體偵測器,並針對醇類以及其混合物去進行氣體偵測分析。多璧奈米碳管首先進行酸化處理,酸化後的碳管溶於水中並與聚乙烯醇水溶液混合形成一個分散均勻的混合溶液,接著將溶液注入預先準備好的鐵氟龍(Teflon)管中,以Freeze-drying的方式製備出碳管海綿。運用奈米碳管海綿製備而成的氣體偵測器可以偵測在飽合蒸氣壓下水與不同的醇類以及其在不同濃度下的混合物。本研究同時探討其氣體吸附的機制,並分析氣體偵測器對不同種類的受測物其響應值與其分子極性和蒸氣壓乘積間的關係。


    Novel gas sensors based on functionalized multi-wall carbon nanotubes (MWCNTs) were fabricated and characterized with alcohols and their mixtures. MWCNTs (Multi-walled-carbon-nanotubes) were first functionalized by acid treatment and were then dispersed in PVA solution. The solution was then transferred into Teflon tubes to fabricate CNT foams by freeze-drying. The sensors were capable of distinguishing water and different alcohols at saturated pressure and their mixtures of varying concentrations. The operating mechanisms for the fabricated sensors were proposed, wherein correlations between the sensitivity of the sensor and the product of the molecular polarity and vapor pressure of different vapors were established and experimentally demonstrated.

    I. Introduction 1 2-1 Carbon nanotubes (CNTs) 2 2-2 Carbon nanotube foams 2 2-3 Gas sensors 3 III. Experimental 8 3-1 Materials and equipment 8 3-2 Preparation of dispersed CNTs solution 8 3-3 Fabrication of the CNT sponge gas sensors 9 3-4 Sensor characterization 10 IV. Results and discussion 14 4-1 Typical response behavior and reproducibility of the gas sensor 14 4-1-1 Typical response behavior of sensors 14 4-1-2 Reproducibility of sensors 14 4-1-3 Response of sensors to pure one-component solution 15 4-2 Gas sensing factors 17 4-2-1 Saturated vapor pressure (SVP) and polarity of the analyte vapors 17 4-2-2 Geometry of the analyte molecules 19 4-3 Response of sensor to binary mixture 22 4-3-1 Response of sensors to mixture of ethanol and water 22 4-3-2 Response of sensors to mixture of ethanol and methanol 23 V. Conclusions 38 References 39

    1. Babaei, M. and N. Alizadeh, Methanol selective gas sensor based on nano-structured conducting polypyrrole prepared by electrochemically on interdigital electrodes for biodiesel analysis. Sensors and Actuators B: Chemical, 2013. 183: p. 617-626.
    2. Hojati-Talemi, P., A.G. Kannan, and G.P. Simon, Fusion of carbon nanotubes for fabrication of field emission cathodes. Carbon, 2012. 50(2): p. 356-361.
    3. Yan, X., B.-K. Tay, and P. Miele, Field emission from ordered carbon nanotube-ZnO heterojunction arrays. Carbon, 2008. 46(5): p. 753-758.
    4. Yuge, R., et al., Characterization and field emission properties of multi-walled carbon nanotubes with fine crystallinity prepared by CO2 laser ablation. Applied Surface Science, 2012. 258(18): p. 6958-6962.
    5. Niu, Z., et al., A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. Energy & Environmental Science, 2012. 5(9): p. 8726.
    6. Ahn, D., et al., Applying functionalized carbon nanotubes to enhance electrochemical performances of tin oxide composite electrodes for Li-ion battery. Journal of Power Sources, 2012. 212: p. 66-72.
    7. Cohen, D.J., et al., A highly elastic, capacitive strain gauge based on percolating nanotube networks. Nano Lett, 2012. 12(4): p. 1821-5.
    8. Slobodian, P., P. Riha, and P. Saha, A highly-deformable composite composed of an entangled network of electrically-conductive carbon-nanotubes embedded in elastic polyurethane. Carbon, 2012. 50(10): p. 3446-3453.
    9. Leghrib, R., et al., Gas sensors based on multiwall carbon nanotubes decorated with tin oxide nanoclusters. Sensors and Actuators B: Chemical, 2010. 145(1): p. 411-416.
    10. Hu, L.B., et al., Silicon-Carbon Nanotube Coaxial Sponge as Li-Ion Anodes with High Areal Capacity. Advanced Energy Materials, 2011. 1(4): p. 523-527.
    11. 侯鈺玲, 奈米碳管海棉氣體檢測器的製作與特性研究. 2013, 國立清華大學材料科學工程學系碩士論文: 新竹市.
    12. Xu, Y., J. Guo, and C. Wang, Sponge-like porous carbon/tin composite anode materials for lithium ion batteries. Journal of Materials Chemistry, 2012. 22(19): p. 9562.
    13. Gui, X., et al., Carbon nanotube sponges. Advanced Materials, 2010. 22(5): p. 617-21.
    14. Wang, L., et al., Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes. Journal of Materials Chemistry, 2011. 21(45): p. 18295.
    15. 謝家齊, 奈米碳管海綿之製造與特性研究. 2011, 國立清華大學材料科學工程學系碩士論文: 新竹市.
    16. Bryning, M.B., et al., Carbon nanotube aerogels. Advanced Materials, 2007. 19(5): p. 661-664.
    17. Yang, M., H.C. Kim, and S.H. Hong, DMMP gas sensing behavior of ZnO-coated single-wall carbon nanotube network sensors. Materials Letters, 2012. 89: p. 312-315.
    18. Jing, H.J., Y.D. Jiang, and X.S. Du, Dimethyl methylphosphonate detection with a single-walled carbon nanotube capacitive sensor fabricated by airbrush technique. Journal of Materials Science-Materials in Electronics, 2013. 24(2): p. 667-673.
    19. Meng, F.-L., et al., Electronic chip based on self-oriented carbon nanotube microelectrode array to enhance the sensitivity of indoor air pollutants capacitive detection. Sensors and Actuators B: Chemical, 2011. 153(1): p. 103-109.
    20. Albiss, B.A., et al., NO2 Gas Sensing Properties of ZnO/Single-Wall Carbon Nanotube Composites. Ieee Sensors Journal, 2010. 10(12): p. 1807-1812.
    21. Ma, N., Characterization of carbon nanotubes based resistive and capacitive gas sensors. 2007, University of Kentucky Doctoral Dissertations. Paper 558.
    22. Slobodian, P., et al., Multi-wall carbon nanotube networks as potential resistive gas sensors for organic vapor detection. Carbon, 2011. 49(7): p. 2499-2507.
    23. Lee, K., et al., Single-walled carbon nanotube/Nafion composites as methanol sensors. Carbon, 2011. 49(3): p. 787-792.
    24. Kar, P., N.C. Pradhan, and B. Adhikari, Application of sulfuric acid doped poly (m-aminophenol) as aliphatic alcohol vapor sensor material. Sensors and Actuators B: Chemical, 2009. 140(2): p. 525-531.
    25. Kar, P. and A. Choudhury, Carboxylic acid functionalized multi-walled carbon nanotube doped polyaniline for chloroform sensors. Sensors and Actuators B: Chemical, 2013. 183: p. 25-33.
    26. Chen, Y., et al., Novel capacitive sensor: Fabrication from carbon nanotube arrays and sensing property characterization. Sensors and Actuators B: Chemical, 2009. 140(2): p. 396-401.
    27. Dokmeci, M. and K. Najafi, A high-sensitivity polyimide capacitive relative humidity sensor for monitoring anodically bonded hermetic micropackages. Journal of Microelectromechanical Systems, 2001. 10(2): p. 197-204.
    28. Hong, H.P., et al., Percolated pore networks of oxygen plasma-activated multi-walled carbon nanotubes for fast response, high sensitivity capacitive humidity sensors. Nanotechnology, 2013. 24(8): p. 085501.
    29. Bissell, R.A., K.C. Persaud, and P. Travers, The influence of non-specific molecular partitioning of analytes on the electrical responses of conducting organic polymer gas sensors. Physical Chemistry Chemical Physics, 2002. 4(14): p. 3482-3490.
    30. Martos, P.A., A. Saraullo, and J. Pawliszyn, Estimation of air/coating distribution coefficients for solid phase microextraction using retention indexes from linear temperature-programmed capillary gas chromatography. Application to the sampling and analysis of total petroleum hydrocarbons in air. Analytical Chemistry, 1997. 69(3): p. 402-408.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE