研究生: |
劉凌瑛 Liu, Ling-Ying. |
---|---|
論文名稱: |
三維複合功能結構的快速成型與整合技術 Rapid Prototyping and Integration of 3D Composite Functional Structures |
指導教授: |
蘇育全
Su, Yu-Chuan. |
口試委員: |
饒達仁
Yao, Da-Jeng. 陳紹文 Chen, Shao-wen. |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 117 |
中文關鍵詞: | 光固化 、快速成型 、複合結構 |
外文關鍵詞: | UV Curable, Rapid prototyping, Composite Structures |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們已經成功實現利用DLP三維列印製程達到製作微流體系統元件及氣壓式制動器之複合功能結構。DLP三維列印製程技術我們可以達到最高解析度為10微米,每層最小厚度為10微米,並且在不同層結構上結合不同材料達到複合結構之功能。我們利用DLP三維列印技術製作隔膜式振盪器及球型振盪器的複合結構,提供可切換等流速之牛頓流體,產生自發性的液體振盪,其中球型振盪器震盪頻率可達到1.77Hz高於先前報導所報導的1Hz[24],並且輸入流量是先前報導的六分之一,且一次製造流程所花時間約30分鐘,同時可以製造20個振盪器,達到快速成型之目的。另外過去傳統製造氣動式制動器制動器為繞線方式[25,28],且依照繞線幾何形狀不同時往往需要依靠黏著劑幫忙,DLP三維列印技術提供可製造複雜之幾何形狀外,並且可以透過設計特定結構,例如收縮結構有別於以往觀念要施加負壓才會收縮,經由結構設計可以達到施加正壓產生收縮效果,除此之外同時也設計伸長、螺旋及彎曲結構,可以依照不同應用場合及尺寸大小,搭配不同結構形狀,達到複合功能結構之目的。
Inspired by nature, researchers have begun to explore the design and control of soft-bodied robots composed of compliant materials. These robots have continuously deformable structures that result in a relatively large number of degrees of freedom compared with their hard-bodied counterparts. The key challenge for creating soft machines that achieve their full potential is the development of controllable soft bodies using smart materials and structures that can sense, actuate and compute. The goal of this thesis is to develop 3D manufacturing and integration schemes that realize complex composite structures with desired functions. More specifically, DLP (Digital Light Processing) stereolithography is employed to accomplish soft machines with desirable functionality and controllability.
A high-resolution light engine based on TI’s 1920×1080 micromirror array, is used to project the images for layer-by-layer photo-polymerization. The pitch of the micro-mirror array is 5.4 μm, so the utilization of adjustable projection lens results in an output image resolution ranging from 2.7 to 27 μm. The Z resolution (i.e., the minimum layer thickness) of the customized 3D printing platform is down to 10 μm. In the prototype demonstration, (1) a new type of all-elastomer, miniature pneumatic actuators that can be tailored to yield desired locomotion and forces for medical applications, and (2) novel fluidic oscillators that generate periodic flow outputs autonomously for clocking and switching functions are realized and integrated. The composite pneumatic actuators are capable of performing desired actuation, including contraction, elongation, bending, twisting, and their combinations on demand. It is demonstrated for the first time that the fluidic oscillators and the integrated osmotic pumps can operate auton¬omously and achieve a maximum frequency up to 1.7 Hz. They can function as integrated controllers and built-in power sources to realize auton¬omous and programmable systems. As such, sophisticated and automated control of pressure driven soft robots and microfluidic systems can potentially be realized.
1.鄭正元,3D列印積層製造技術與應用,全華圖書,台灣,2017年5月
2.Charles W. Hull,Apparatus for production of three-dimensional objects by stereolithography,United States Patent,US4575330A,1984
3.S. Scott Crump,Apparatus and method for creating three-dimensional objects,United States Patent,US5121329A,1989
4.ANDREAS OSTENDORF AND BORIS N. CHICHKOV, LASER ZENTRUM HANNOVER EV, Two-Photon Polymerization: A New Approach to Micromachining,2006
5.Nanoscribe, Spectrum of Applications New Trends in Microfabrication,2007
6.A. Ping Zhang,Rapid Fabrication of Complex 3D Extracellular icroenvironments by Dynamic Optical Projection Stereolithography,Advanced Materials,2012
7.Hua Gong,Optical approach to resin formulation for 3D printed microfluidics, RSC Advances,2015.
8.Studer, V., Scaling properties of a low-actuation pressure microfluidic valve. J. Appl. Phys.,2004.
9.Hosokawa, K.; Maeda, R. A pneumatically-actuated three-way microvalve fabricated with polydimethylsiloxane using the membrane transfer technique. J. Micromech. Microeng. 2000,10, 415-420.
10.Baek, J.Y.; Park, J.Y.; Ju, J.I.; Lee, T.S.; Lee, S.H. A pneumatically controllable flexible and polymeric microfluidic valve fabricated via in situ development. J. Micromech. Microeng. 2005,15, 1015-1020.
11.Thorsen, T.; Maerkl, S.J.; Quake, S.R. Microfluidic large-scale integration. Science 2002.
12.Juncker, D.; Schmid, H.; Drechsler, U.; Wolf, H.; Wolf, M.; Michel, B.; de Rooij, N.Delamarche, E. Autonomous microfluidic capillary system. Anal. Chem. 2002, 74, 6139-6144.
13.Gu, W.; Zhu, X.Y.; Futai, N.; Cho, B.S.; Takayama, S. Computerized microfluidic cell culture using elastomeric channels and braille displays. Proc. Natl. Acad. Sci. USA 2004, 101, 15861-15866.
14.Jeong, O.C.; Konishi, S. Fabrication of a peristaltic micro pump with novel cascaded actuators. J. Micromech. Microeng. 2008, 18, 025022.
15.Lee, S.J.; Chan, J.C.Y.; Maung, K.J.; Rezler, E.; Sundararajan, N. Characterization of laterally deformable elastomer membranes for microfluidics. J. Micromech. Microeng. 2007.
16.C. G. Roffey, Photopolymerization of Surface Coating, John Wiley & Sons, 1982
17.Sangermano,M,Advances in cationic photopolymerization, Pure Appl. Chem., Vol. 84, No. 10, pp. 2089–2101, 2012.
18.陳奇毅,UV Curable PU 樹脂於不同波長之反應性探討,碩士論文,國立臺北科技大學有機高分子研究所,台北,2002。
19.吳丁凱,光硬化型樹脂的發展動向,專題調查報告,工業技術研究院化學工業研究所,新竹,1987。
20.黃錫裕,UV Curable PU樹脂之硬化動力學分析,碩士論文,國立臺北科技大學有機高分子研究所,台北,2004。
21.廖信銘,負型光阻劑之合成及性質探討,碩士論文,國立成功大學化學工程研究所,台南,1999。
22.劉建良,UV Curing 發展簡介與應用,化工科技與商情,第四十一期,2003。
23.Clifton L Kehr,Walter R Wszolek,Photocurable liquid polyene-polythiol polymer compositions,United States Patent,US3661744A,1966。
24.Bobak Mosadegh,Integrated elastomeric components for autonomous regulation of sequential and oscillatory flow switching in microfluidic devices,Nature physics, 2010。
25.Frank Daerden,THE CONCEPT AND DESIGN OF PLEATED PNEUMATIC ARTIFICIAL MUSCLES,Article in International Journal of Fluid Power,January 2001
26.Frank Daerden,Pneumatic Artificial Muscles: actuators for robotics and automation,2000
27.Daerden F and Lefeber D,Pneumatic artificial muscles:Actuators for robotics and automation.,European Journal of Mechanical and Environmental Engineering 47(1): 10–21,2002
28.Girish Krishnan,Kinematics of a Generalized Class of Pneumatic Artificial Muscles,Journal of Mechanisms and Robotics,NOVEMBER 2015, Vol. 7
29.Michael Wehner, Ryan L. Truby, Daniel J. Fitzgerald, Bobak Mosadegh, George M. Whitesides, Jennifer A. Lewis & Robert J. Wood,An integrated design and fabrication strategy for entirely soft, autonomous robots,NATURE,doi:10.1038/nature19100,2016。
30.A. Nallathambi, T. Shanmuganantham,Design of Diaphragm Based MEMS Pressure Sensor with Sensitivity Analysis for Environmental Applications, Sensors & Transducers, Vol. 188, Issue 5, May 2015, pp. 48-54,2015
31.IO Wygant,Analytically Calculating Membrane Displacement and the Equivalent Circuit Model of a Circular CMUT Cell,IEEE International Ultrasonics Symposium Proceedings,2008