研究生: |
潘宗余 |
---|---|
論文名稱: |
有限體積法應用於沉浸介面法之彈性與固定邊界流場之數值分析 Finite Volume Method Based Immersed Interface Method for Elastic Interface and Rigid Boundary flow |
指導教授: | 林昭安 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 56 |
中文關鍵詞: | 沉浸介面法 、有限體積法 、蒲松方程式 、二階精度 、彈性邊界 、固定邊界 |
外文關鍵詞: | Immersed Interface Method, Finite Volume Method, Poisson equation, Second order accuracy, Elastic interface, Rigid boundary |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this thesis, the applications of the proposed immersed interface method based on finite volume formulation are presented. The merit of the present scheme is that the required jump conditions are pressure and first order derivative of velocity. Despite the simplicity of the jump conditions, the second second order accuracy of the scheme is still retained. This is demonstrated by predicting the discontinuous Poisson equations, where the second order accuracy in maximum errors is obtained for the cases investigated. The scheme is further applied to the moving elastic interface problems, where the rigid surface is modeled using the immersed boundary method. To ensure the stable solution of the elastic problem, Fourier filtering is adopted to smooth the elastic boundary at each time step after the interface are moved and the cubic spline is used to redistribute the Lagrangian markers along the interface. The constricted channel with elastic membrane demonstrates the capability of modeling elastic interface and rigid boundary flow. Also, developments of the membrane in passing through the constricted channel at different membrane surface tension and diameters are explored.
[1] C.H. Lin, C.A. Lin, Simple high-order bounded convection scheme to model discontinuities, AIAA J. 35 (1997) 563-565.
[2] C.S. Peskin, Flow patterns around heart valves : a numerical method, J. Comput. Phys. 10 (1972) 252-271.
[3] C.S. Peskin, The fluid dynamics of heart valves : experimental, theoretical and computational methods, Ann. Rev. Fluid Mech. 14 (1982) 235-259.
[4] D. Goldstein, R. Handler and L. Sirovich, Modeling a no-slip flow boundary with an external force field, J. Comput. Phys. 105 (1993) 354-366.
[5] E.A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed boundary finite-difference methods for three dimensional complex flow simulations, J. Comput. Phys. 161 (2000) 30.
[6] J. Mohd-Yusof, Combined immersed boundary / B-Spline method for simulations of flows in complex geometries in complex geometries, CTR annual research briefs, NASA Ames / Stanford University (1997).
[7] Z. Li, The Immersed Interface Method - A numerical approach for partial differential equations with interfaces, Ph.D. thesis (University of Washington, 1994).
[8] Z. Li, A note on immersed interface methods for three dimensional elliptic equations, Comput. Math. Appl. 31 (1996) 9-17.
[9] R.J. LeVeque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal. 31 (1994) 1019-1044.
[10] R.J. LeVeque, Z. Li, Immersed interface method for Stokes flow with elastic boundaries or surface tension, SIAM J. Sci. Comput. 18 (1997) 709.
[11] A. Wiegmann, K.P. Bube, The immersed interface method for nonlinear differential equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal. 35 (1998) 177-200.
[12] A. Wiegmann, K.P. Bube, The explicit-jump immersed interface method : finite difference methods for PDEs with piecewise smooth solutions, SIAM J. Numer. Anal. 37 (2000) 827-862.
[13] A.L. Fogelson, J.P. Keener, Immersed interface method for Neumann and related problems in two and three dimensions, SIAM J. Sci. Comput. 22 (2000) 1630-1654.
[14] Z. Li, An overview of the immersed interface method and its applications, Taiwanese J. Math. 7 (2003) 1-49.
[15] D. Calhoun, A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions, J. Comput. Phys. 176 (2002) 231-275.
[16] Z. Li, C. Wang, A fast finite difference method for solving Navier-Stokes equations of irregular domains, Commun. Math. Sci. 1 (2003) 180.
[17] Z. Li, M.C. Lai, The immersed interface method for the Navier-Stokes equations with singular forces, J. Comput. Phys. 171 (2001) 822-842.
[18] D.V. Le, B.C. Khoo, J. Peraire, An immersed interface method for the incompressible Navier Stokes equations in irregular domains, Proceedings of the third MIT conference on computational fluid and solid mechanics, Elsevier Science (2005).
[19] J. Kim, D. Kim, H. Choi, An immersed-boundary finite-volume method for simulations of flow in complex geometries, J. Comput. Phys. 171 (2001) 132-150.
[20] E. Balaras, Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations, Comput. Fluids 33 (2004) 375.
[21] H.S. Udaykumar, R. Mittal, Rampunggoon, A. Khanna, A sharp interface Cartensian grid method for simulating flows with complex moving boundaries, J. Comput. Phys. 174 (2001) 345.
[22] J. Yang, E. Balaras, An embedded boundary formulation for large eddy simulation of turbulent flows interacting with moving boundaries, J. Comput. Phys. 215 (2006) 12.
[23] K.S. Sheth, C. Pozrikidis, Effect of inertia on the deformation of liquid drops in simple shear flow, Comput. Fluids 24 (1995) 101-119.
[24] C. Pozrikidis, Effect of membrane bending stiffness in the deformation of capsules in simple shear flow, J. Fluid Mech. 440 (2001) 269.
[25] J. Lee, C. Pozrikidis, Effect of surfactant on the deformation of drops and bubbles in Navier-Stokes flow, Comput. Fluids 35 (2006) 43.
[26] M.C. Lai, Y.H. Tseng, H. Huang, An immersed boundary method for interfacial flows with insoluble surfactant, J. Comput. Phys. (2008)7279-7293.
[27] S.W. Su, M.C. Lai, C.A. Lin, A immersed boundary technique for simulating complex flows with rigid boundary, Comput. Fluids 36 (2007) 313.
[28] Z. Li, M.C. Lai, A remark jump conditions for the three-dimensional Navier - Stokes equations involving immersed moving membrane, Appl. Math. Lett. 14 (2001) 149.
[29] L. Lee, R.J. LeVeque, An immersed interface method for incompressible Navier - Stokes equations, SIAM J. Sci. Comput. 25 (2003) 832.
[30] S. Xu, Z.J. Wang, Systemmatic derivation of jump conditions for the immersed interface method in three dimensional flow simulation, SIAM J. Sci. Comput. 27 (2006) 1948-1980.
[31] S. Xu, Z.J.Wang, An immersed interface method for simulating the interaction of a fluid with moving boundaries, J. Comput. Phys. 216 (2006) 454-493.
[32] S. Xu, Z.J. Wang, A 3D immersed interface method for fluid-solid interaction, Comput. Method Appl. M. 197 (2008) 2068-2086.
[33] M.C. Lai, H.C. Tseng, A simple implementation of the immersed interface methods for Stokes flows with singular forces, Comput. Fluids 37 (2008) 99-106.
[34] J.J. Xu, Z. Li, J.S. Lowengrub, H.K. Zhao, A level-set method for interfacial flows with surfactant, J. Comput. Phys. 212 (2006) 590-616.
[35] D.V. Le, B.C. Khoo, J. Peraire, An immersed interface method for viscous incompressible flow involving rigid and flexible boundaries, J. Comput. Phys. 109 (2006) 138.
[36] F.H. Harlow, J.E. Welsh, Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface, Phys. Fluids 8 (1965) 2181.
[37] A.J. Chorine, Numeriacal solution of the Navier-stokes equations, Math. Comp. 22 (1968) 745.
[38] H. Choi, P. Moin, Effects of the computational time step on numerical solutions of turbulent flow, J. Comput. Phys. 113 (1993) 1-4.
[39] D.L. Browm, R. Cotez, M.L. Minion, Accurate projection methods for the incompressible Navier-Stokes equations, J. Comput. Phys. 168 (2001) 464-499.
[40] C.C. Liao, Y.W. Chang, C.A. Lin and J.M. McDonough, Simulating flows with moving rigid boundary using immersed-boundary method, Comput. Fluids 39 (2010) 152-167.
[41] S. Suresh, Biomechanics and biophysics of cancer cells, ACTA BIOMATER. 3 (2007) 41338.