簡易檢索 / 詳目顯示

研究生: 朱庭毅
Chu, Ting-Ye
論文名稱: 利用兆瓦級雷射脈衝在次毫米尺度之稠密氮氣氣靶實現之雷射尾流場加速
Laser wakefield acceleration using terrawatt-level laser pulses and sub-millimeter dense nitrogen gas target
指導教授: 林明緯
Lin, Ming-Wei
口試委員: 劉偉強
Lau, Wai-Keung
周紹暐
Chou, Shao-Wei
學位類別: 碩士
Master
系所名稱: 原子科學院 - 核子工程與科學研究所
Nuclear Engineering and Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 80
中文關鍵詞: 高強度雷射系統雷射尾流場加速器電漿強場物理
外文關鍵詞: High power laser system, Laser and plasma wakefield acceleration, Plasma, High field physics
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用高強度(> 5x1018 W/cm2)飛秒(fs)的雷射脈衝聚焦到高密度氣體(> 1018 cm-3)氣靶中來實現雷射尾流場加速(LWFA)。在該機制作用下,雷射脈衝的有質動力激發非線性電漿波產生巨大的加速場,該加速場可以上升至〜100 GV/m來加速電子。為了有效激發非線性電漿波並實現電漿空泡加速機制,當前的大多數實驗都使用Ti:sapphire雷射系統生成800 nm的10s-100 TW峰值功率的脈衝來驅動LWFA。但是,這些> 10 TW脈衝通常以≤ 10 Hz的低重複頻率生成,這最終限制了經由LWFA所產生之電子束的平均電流,並限制了LWFA在 X射線成像或電子治療等領域需要需要高輻射通量之應用。隨著新型二極體飛秒雷射系統的快速發展,近年可預期該系統可輸出頻率為kHz之TW級雷射脈衝,輸出脈衝可用於驅動高重複頻率的LWFA,並產生10s-MeV電子,平均電流顯著增加> 10 nA。因此,本研究的重點是開發由時寬約40 fs和能量<150 mJ雷射脈衝所驅動之few TW LWFA機制。通過直徑≤ 200 μm孔徑之噴嘴和寬度≤ 400 μm的氣室所產生高密度次毫米級的氮氣氣靶,當< 4 TW脈衝聚焦在電漿密度> 2.5 x 1019 cm-3的稠密氮靶上時,透過自聚焦效應和自調製效應可以將脈衝強度大大提高到能夠激發電漿空泡加速機制的水平。當將40 fs,3.2-TW,810 nm的雷射脈衝聚焦到由直徑為152μm孔徑之噴嘴以600 psi的背壓所產生的瞬態、自由流動的氮氣噴流時,會產生能量峰值為~11 MeV、電荷量約為23 pC(> 5 MeV)的電子束。在將2-TW脈衝引入400μm寬度之氣室,並使用背壓20 psi所產生氮氣氣靶之實驗案例中,可產生具有高達40 MeV連續分佈能譜的電子束,其電荷為23.5 pC(> 5 MeV)。


    Laser wake-field acceleration (LWFA) can be achieved by focusing an intense (> 5x 1018 W/cm2), femtosecond (fs) laser pulse into a high-density gas target. In this mechanism, the ponderomotive force of the laser pulse excites nonlinear plasma waves and results in huge accelerating fields that can rise to ~ 100 GV/m for accelerating electrons. To effectively excite strong plasma waves and realize the plasma cavitation, most of the current experiments use Ti:sapphire laser systems to generate 800-nm pulses of 10s-100 TW peak power to drive LWFA. However, these >10 TW pulses are typically generated with a low repetition rate ≤10 Hz that ultimately limits the average current of electrons from LWFA and inhibits their applications into X-ray imaging or electron therapy that requires a high radiation flux.
    It is expected that TW-level pulses produced from novel diode-pump fs lasers at kHz frequencies can be used to drive high-repetition-rate LWFA and generate 10s-MeV electrons with a considerably increased average current > 10 nA. Therefore, this research focuses on developing the scheme of few-TW LWFA driven by laser pulse with a duration ~ 40 fs and an energy < 150 mJ. High-density, sub-mm nitrogen gas targets are produced from gas jets with an orifice of a diameter ≤ 200 μm or from gas cells having a width ≤ 400 μm. When a < 4 TW pulse is focused onto a dense nitrogen target with a plasma density > 2.5 x 1019 cm-3, the induced self-focusing and self-modulation effects can greatly enhance the pulse intensity to a level capable of exciting plasma bubbles. When 40-fs, 3.2-TW, 810-nm pulses are focused onto transient, free- flowing nitrogen jets produced from a 152- μm diameter orifice with a backing pressure of 600 psi, electrons are generated with an energy spectrum peaks at 11 MeV and the charge ~ 23 pC (> 5 MeV). In the case that 2 –TW pulses are introduced into nitrogen targets produced with a 400-μm wide gas cell and 20-psi backing pressure, electrons having a continuously distributed spectrum up to 40 MeV are generated with a charge of 23.5 pC (>5 MeV).

    摘要 i Abstract ii 致謝 iii 目錄 iv 表目錄 vi 圖目錄 vii 第一章 緒論 1 1.1 發展驅動LWFA之動機 1 1.2 LWFA歷史與現狀介紹 3 1.3 LWFA未來應用發展 4 第二章 雷射電子加速器之概述 6 2.1 啾頻脈衝放大器(chirped pulse amplification,CPA) 6 2.2 光場游離(Optical-Field Ionization) 7 2.3 電漿波的產生(Generation of plasma waves) 9 2.4 電子被電漿波捕獲加速之條件 11 2.5 電漿空泡加速機制(plasma bubble regime) 13 2.6 電子注入的機制 16 2.6.1 游離誘導電子注入尾流場(ionization-induced injection) 16 2.6.2 以電漿密度斜坡(down ramp injection)注入電子 17 2.7 加速電子能量限制 18 第三章 實驗設計 20 3.1 二十兆瓦雷射驅動光源 20 3.2 輸入光路設計 23 3.3 系統觸發時序之設計 25 3.4 實驗站的設計 28 3.5 泵浦光束系統(pump beam system) 29 3.6 探測光束(probe beam) 的設計 30 3.7 氣體噴嘴(gas nozzle) 32 3.8 中繼成像系統(relayed-imaging system)的設計 34 3.9 電子光譜儀(Electron spectrometer)的設計 35 3.9.1 磁鐵(Magnet) 36 3.9.2 電子感光材料(LANEX) 38 第四章 實驗架設 40 4.1 泵浦光束系統架設 40 4.1.1 架設偏軸拋物面鏡(Off‐axis Parabolic (OAP) mirror) 40 4.1.2 架設氣體噴嘴 43 4.1.3 架設LANEX和成像面的校正 43 4.2 探測光束系統架設 45 4.2.1 架設延遲光路(delay line) 45 4.2.2 架設波前傳感器系統(wavefront sensor) 47 第五章 實驗結果 48 5.1 產生穩定電子束之雷射參數 48 5.2 152 μm氣體噴嘴所產生之電子束性質分析 52 5.3 178 μm氣體噴嘴所產生之電子束性質分析 54 5.4 在孔徑127 μm~203 μm氣體噴嘴所產生氮氣噴流密度 55 5.5 改變射束高度100 μm~300 μm所產生之電子束性質比較 58 5.5.1 峰值功率3.2 TW、2.5 TW在射束高度300 μm產生之電子束性質 58 5.5.2 峰值功率2 TW在射束高度200 μm產生之電子束性質 61 5.5.3 峰值功率1.5 TW在射束高度100 μm產生之電子束性質 62 5.6 預脈衝對產生之加速電子束影響 66 5.7 使用氣室(gas cell)產生之加速電子束 68 5.7.1 改變背壓10 psi~ 30 psi在寬度400 μm氣室所產生加速電子性質比較 68 5.7.2改變氣室寬度250 μm~ 400 μm在同背壓20 psi下加速電子性質比較 70 5.7.3氣室出口端之電漿密度 72 第六章 結論與未來展望 74 第七章 參考資料 77

    [1] V. Malka, J. Faure, Y. A. Gauduel, E. Lefebvre, A. Rousse, and K. T. Phuoc, "Principles and applications of compact laser–plasma accelerators," Nat. Phys. 4, 447-453,(2008).
    [2] P. B. Wilson, "RF Breakdown in Accelerator Structures: From Plasma Spots to Surface Melting," Tech. Rep. SLAC-PUB-11086,(2005).
    [3] M.-w. Lin, "Direct laser electron acceleration in a density-modulated plasma waveguide," Department of Nuclear Engineering, Pennsylvania State University, (2015).
    [4] G. A. Mourou, T. Tajima, and S. V. Bulanov, "Optics in the relativistic regime," Rev. Mod. Phys. 78, 309,(2006).
    [5] S. Corde, K. T. Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, and E. Lefebvre, "Femtosecond x rays from laser-plasma accelerators," Rev. Mod. Phys. 85, 1,(2013).
    [6] T. Toshiki and J. M. Dawson, "Laser electron accelerator," Phy.Rev.Lett. 43, 267,(1979).
    [7] D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221,(1985).
    [8] C. Geddes, C. Toth, J. Van Tilborg, E. Esarey, C. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. Leemans, "High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding," Nat. Phys. 431, 538-541,(2004).
    [9] S. P. Mangles, C. Murphy, Z. Najmudin, A. G. R. Thomas, J. Collier, A. E. Dangor, E. Divall, P. Foster, J. Gallacher, and C. Hooker, "Monoenergetic beams of relativistic electrons from intense laser–plasma interactions," Nat. Phys. 431, 535-538,(2004).
    [10] J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, and V. Malka, "A laser–plasma accelerator producing monoenergetic electron beams," Nat. Phys. 431, 541-544,(2004).
    [11] W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Toth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, "GeV electron beams from a centimetre-scale accelerator," Nat. Phys. 2, 696-699,(2006).
    [12] A. J. Gonsalves, K. Nakamura, J. Daniels, C. Benedetti, C. Pieronek, T. C. H. de Raadt, S. Steinke, J. H. Bin, S. S. Bulanov, J. van Tilborg, C. G. R. Geddes, C. B. Schroeder, C. Toth, E. Esarey, K. Swanson, L. Fan-Chiang, G. Bagdasarov, N. Bobrova, V. Gasilov, G. Korn, P. Sasorov, and W. P. Leemans, "Petawatt Laser Guiding and Electron Beam Acceleration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide," Phys Rev Lett. 122, 084801,(2019).
    67
    [13] J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, "Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses," Nat. Phys. 444, 737-9,(2006).
    [14] C. G. Geddes, K. Nakamura, G. R. Plateau, C. Toth, E. Cormier-Michel, E. Esarey, C. B. Schroeder, J. R. Cary, and W. P. Leemans, "Plasma-density-gradient injection of low absolute-momentum-spread electron bunches," Phys Rev Lett. 100, 215004,(2008).
    [15] F. Albert and A. G. Thomas, "Applications of laser wakefield accelerator-based light sources," Plasma Phys. Control. Fusion. 58, 103001,(2016).
    [16] B. Hidding, M. Geissler, G. Pretzler, K. U. Amthor, H. Schwoerer, S. Karsch, L. Veisz, K. Schmid, and R. Sauerbrey, "Quasimonoenergetic electron acceleration in the self-modulated laser wakefield regime," Phys. Plasmas. 16, 2009).
    [17] E. Kaksis, G. Almási, J. A. Fülöp, A. Pugžlys, A. Baltuška, and G. Andriukaitis, "110-mJ 225-fs cryogenically cooled Yb: CaF2 multipass amplifier," Optics express. 24, 28915-28922,(2016).
    [18] T. Nubbemeyer, M. Kaumanns, M. Ueffing, M. Gorjan, A. Alismail, H. Fattahi, J. Brons, O. Pronin, H. G. Barros, and Z. Major, "1 kW, 200 mJ picosecond thin-disk laser system," Opt. Lett. 42, 1381-1384,(2017).
    [19] M. Kaumanns, V. Pervak, D. Kormin, V. Leshchenko, A. Kessel, M. Ueffing, Y. Chen, and T. Nubbemeyer, "Multipass spectral broadening of 18 mJ pulses compressible from 1.3 ps to 41 fs," Optics letters. 43, 5877-5880,(2018).
    [20] S. Kneip, C. McGuffey, F. Dollar, M. Bloom, V. Chvykov, G. Kalintchenko, K. Krushelnick, A. Maksimchuk, S. Mangles, and T. Matsuoka, "X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator," Applied Physics Letters. 99, 093701,(2011).
    [21] D. Attwood and A. Sakdinawat, X-rays and extreme ultraviolet radiation: principles and applications. Cambridge university press,(2017).
    [22] K. R. Hogstrom and P. R. Almond, "Review of electron beam therapy physics," Phys. Med. Biol. 51, 455-489,(2006).
    [23] R. L. Wagner, "Laser-plasma electron accelerators and nonlinear, relativistic optics," Applied physics, University of Michigan, (1999).
    [24] W. Kruer, The physics of laser plasma interactions. CRC Press,(2018).
    [25] W. Lu, M. Tzoufras, C. Joshi, F. S. Tsung, W. B. Mori, J. Vieira, R. A. Fonseca, and L. O. Silva, "Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime," PHYS REV SPEC TOP-AC. 10, 061301,(2007).
    [26] C.-Y. Hsieh, "Simulation Studies of Laser-Driven Plasma Electron Accelerators," PhD student, Department of Physics, National Central University, (2019).
    68
    [27] W. Lu, M. Tzoufras, C. Joshi, F. S. Tsung, W. B. Mori, J. Vieira, R. A. Fonseca, and L. O. Silva, "Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime," Physical Review Special Topics-Accelerators and Beams. 10, 061301,(2007).
    [28] G. Z. Sun, E. Ott, Y. Lee, and P. Guzdar, "Self‐focusing of short intense pulses in plasmas," Phys. Fluids. 30, 526-532,(1987).
    [29] R. W. Boyd, S. G. Lukishova, and Y. R. Shen, Self-focusing: Past and Present: Fundamentals and Prospects. Springer, New York, NY,(2008).
    [30] M. Chen, E. Esarey, C. Schroeder, C. Geddes, and W. Leemans, "Theory of ionization-induced trapping in laser-plasma accelerators," Phys. Plasmas. 19, 033101,(2012).
    [31] H. Suk, N. Barov, J. B. Rosenzweig, and E. Esarey, "Plasma electron trapping and acceleration in a plasma wake field using a density transition," Phys. Rev. Lett. 86, 1011-1014,(2001).
    [32] B. E. Saleh and M. C. Teich, Fundamentals of photonics. john Wiley & sons,(2019).
    [33] A. Buck, K. Zeil, A. Popp, K. Schmid, A. Jochmann, S. Kraft, B. Hidding, T. Kudyakov, C. Sears, and L. Veisz, "Absolute charge calibration of scintillating screens for relativistic electron detection," Rev. Sci. Instrum. 81, 033301,(2010).
    [34] W. t. Chen, "Development of An All Optical Laser-Plasma Accelerators," master student, Department of Physics, National Taiwan University, (2004).
    [35] M.-W. Lin, C.-Y. Hsieh, D. Tran, and S.-H. Chen, "Simulation study of ionization-induced injection in sub-terawatt laser wakefield acceleration," Phys. Plasmas. 27, 013102,(2020).

    QR CODE