簡易檢索 / 詳目顯示

研究生: 賴軍維
Lai, Jun-Wei
論文名稱: 使用高介電係數絕緣材料降低表面電場之高壓鰭式場效電晶體電靜態特性模擬分析
Simulation Study of Static Performance of High-Voltage FinFETs with Dielectric RESURF
指導教授: 黃智方
Huang, Chih-Fang
口試委員: 徐永珍
Hsu, Yung-Jane
黃宗義
Huang, Zong-Yi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 82
中文關鍵詞: 降低表面電場高介電係數絕緣材料高電壓鰭式電晶體
外文關鍵詞: DielectricRESURF, High-K, High-Voltage, FinFET
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文分析將調變絕緣層介電係數降低表面電場(Dielectric RESURF)應用於高壓鰭式場效電晶體。此高壓鰭式場效電晶體採14奈米鰭式場效電晶體製程步驟做為參考並結合電腦模擬軟體(TCAD)建立高壓鰭式場效電晶體結構。針對元件的電特性、崩潰電壓、特定導通電阻(Specific on-resistance,縮寫Ron,sp)做進一步的分析與討論。
    本文提出的鰭式場效電晶體,以閘極長度為0.1μm,漂移區為1.0μm,絕緣層寬度為0.033μm、深度為0.1μm作為基準結構,並在電特性上與平面式場效電晶體做比較。為了取得漂移區離子佈植的最佳劑量,必須在崩潰電壓與Ron,sp之間作抉擇。本文探討Dielectric RESURF技術並證實增加絕緣層寬度或提高絕緣層介電係數可以提升漂移區離子佈植的最佳劑量。當絕緣層寬度從33nm增加至81nm時,漂移區離子佈植的最佳劑量從4.2x1012cm-2提升至6.9 x1012 cm-2。此外,本文也針對提高絕緣層的介電係數進行探討,當絕緣層介電係數從3.9(SiO2)提高至86(TiO2)時可以提升高壓鰭式場效電晶體的崩潰電壓與降低Ron,sp。在高壓鰭式場效電晶體結合Dielectric RESURF技術下,使用高介電係數絕緣層(K=86)之高壓鰭式場效電晶體的最高崩潰電壓為32.23V,最高FOM值為19536 V2/mΩ-cm2,相較使用低介電係數絕緣層(K=3.9)之高壓鰭式場效電晶體,在最高崩潰電壓上提高24.6%,最高FOM值提高154%。


    In this thesis, the analysis of dielectric RESURF implemented in high-voltage FinFETs has been studied. The high-voltage FinFET structure with a typical 14nm FinFET fabrication process flow has been established by using Technology Computer Aided Design (TCAD) simulation, in order to discuss the electrical characteristics of this device including breakdown voltage and specific on-resistance (Ron,sp).
    For the FinFET structure under study, the gate length is 0.1μm and the drift region length is 1.0μm. Typical STI width(WSTI) is 0.033μm, and typical STI thickness(TSTI) is 0.1μm. The FinFET is compared with a planar MOSFET in electrical characteristics for finding the optimized dose for the drift region implant for a better tradeoff between breakdown voltage and Ron,sp. The concept of dielectric RESURF is explored, and it was found that a higher optimal dose for drift region implant can be achieved by either increasing the width of the STI or by adopting a higher dielectric constant. As the WSTI increased from 33nm to 81nm, the optimal dose for drift region is increased from 4.2x1012cm-2 to 6.9x1012 cm-2. Furthermore, the effect of dielectric constant of STI is also discussed. As the dielectric constant of STI increased from 3.9(SiO2) to 86(TiO2), the breakdown voltage can be increased, and the specific on-resistance can be reduced. With dielectric RESURF in high-voltage FinFETs, the maximum breakdown voltage reaches 32.23V when a High-k (k=86) dielectric is used, and the maximum FOM reaches 19536 V2/mΩ-cm2. The maximum breakdown voltage increased voltage by 24.6%, and the maximum FOM increased value by 154% compared to a Low-k one (k=3.9) case.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 IX 第一章 序論 1 1.1研究動機 1 1.2橫向擴散場效電晶體簡介 2 1.2.1 降低表面電場技術(RESURF)-文獻回顧 3 1.2.2絕緣介電質降低表面電場技術(Dielectric RESURF) 6 1.3鰭式場效電晶體發展與介紹 9 1.3.1 絕緣矽基板、全矽基板鰭式場效電晶體簡介 10 1.3.2 短通道效應簡介 13 1.3.3汲極延伸鰭式場效電晶體 16 1.4論文架構 18 第二章 元件結構與製程流程 19 2.1元件結構 19 2.2製程流程 23 第三章 模擬結果與討論分析 38 3.1閘極長度對於元件的影響 38 3.1.1設計閘極長度 38 3.1.2比較平面式場效電晶體與鰭式場效電晶體的電特性 44 3.2調變STI對於HV-FinFET耐壓能力的影響 55 3.2.1調變STI寬度 55 3.2.2調變STI介電係數 59 3.2.3 調變STI深度 68 第四章 結論與未來工作 76 4.1結論 76 4.2未來工作 76 參考文獻 77

    [1] S. Sun and J. Plummer, "Modeling of the on-resistance of LDMOS, VDMOS, and VMOS power transistors", IEEE Transactions on Electron Devices, vol. 27, no. 2, pp. 356-367, 1980.
    [2] S. Veeraraghavan and J. Fossum, "Short-channel effects in SOI MOSFETs", IEEE Transactions on Electron Devices, vol. 36, no. 3, pp. 522-528, 1989.
    [3] T. Skotnicki, G. Merckel and T. Pedron, "The voltage-doping transformation: a new approach to the modeling of MOSFET short-channel effects", IEEE Electron Device Letters, vol. 9, no. 3, pp. 109-112, 1988.
    [4] M. Shrivastava, H. Gossner and V. Rao, "A Novel Drain-Extended FinFET Device for High-Voltage High-Speed Applications", IEEE Electron Device Letters, vol. 33, no. 10, pp. 1432-1434, 2012.
    [5] S. Merchant, E. Arnold, H. Baumgart, R. Egloff, T. Letavic, S. Mukherjee, and H. Pein, “Dependence of breakdown voltage on drift length and buried oxide thickness in SO1 RESURF LDMOS transistors”, Proc. 5th Int. Symp. on Power Semiconductor Devices and ICs, pp. 124-128, 1993.
    [6] M. Amato and V. Rumennik, “Comparison of lateral and vertical DMOS specific on-resistance,” in IEDM Tech. Dig., 1985, pp. 736–739.
    [7] T. Efland, et al., “An optimized RESURF LDMOS power device module compatible with advanced logic processes,”, IEDM Tech Dig., pp237-240, 1992
    [8] X. Chen, “Lateral high-voltage semiconductor devices with surface covered by thin film of dielectric material with high permittivity,” U.S. Patent 6,936,907, Aug. 30, 2005.
    [9] J. A. Appels and H. M. J. Vaes, “High voltage thin layer devices (RESURF devices),” in IEDM Tech. Dig., 1979, p. 238.
    [10] A. Ludikhuize, “A review of RESURF technology,” in Proc. Int. ISPSD Conf., 2000, pp. 11–18.
    [11] Z. Hossain, M. Imam, J. Fulton, and M. Tanaka, “Double-RESURF 700 V N-channel LDMOS with best-in-class on-resistance,” in Proc. Int. ISPSD Conf., 2002, p. 137.
    [12] X. B. Chen, “Semiconductor power devices with alternating conductivity,” U.S. Patent 5,216,275, 1993.
    [13] T. Fujihira, “Theory of semiconductor superjunction devices,” Jpn. J. Appl. Phys., vol. 36, pp. 6254–6262, 1997.
    [14] X. B. Chen, “Lateral high-voltage semiconductor devices with surface covered by thin film of dielectric material with high permittivity,” U.S. Patent 6,936,907, Aug. 30, 2005.
    [15] J. Li, P. Li, W. Huo, G. Zhang, Y. Zhai, and X. Chen, “Analysis and fabrication of an LDMOS with high-permittivity dielectric,” IEEE Electron Device Lett., vol. 32, no. 9, pp. 1266–1268, Sep. 2011.
    [16] J. Sonsky and A. Heringa, “Dielectric resurf: breakdown voltage control by STI layout in standard CMOS,” in Proc. IEEE Int. Electron Devices Meeting, 2005, pp. 372–376.
    [17] R. Su, P. Chiang and J. Gong, "LDMOSFET with dielectric modulated drift region", Electronics Letters, vol. 46, no. 6, p. 447, 2010.
    [18] J. Zhou, C. Huang, C. Cheng and F. Zhao, "A Comprehensive Analytical Study of Dielectric Modulated Drift Regions—Part I: Static Characteristics", IEEE Transactions on Electron Devices, vol. 63, no. 6, pp. 2255-2260, 2016.
    [19] C. Huang, J. Zhou, C. Cheng and F. Zhao, "A Comprehensive Analytical Study on Dielectric Modulated Drift Regions—Part II: Switching Performances", IEEE Transactions on Electron Devices, vol. 63, no. 6, pp. 2261-2267, 2016.
    [20] J. P. Colinge, FinFETs and Other Multi-Gate Transistors. New York: Springer-Verlag, 2008.
    [21] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, “FinFET—A self-aligned double-date MOSFET scalable to 20 nm,” IEEE Trans. Electron Devices, vol. 47, no. 12, pp. 2320–2325, Dec. 2002.
    [22] L. Chang, S. Tang, T.-J. King, J. Bokor, and C. Hu, “Gate length scaling and threshold voltage control of double-gate MOSFETs,” in IEDM Tech. Dig, 2000, pp. 719–722.
    [23] Y.-K. Choi, N. Lindert, P. Xuan, S. Tang, D. Ha, E. Anderson, T.-J. King, J. Bokor, and C. Hu, “Sub-20 nm CMOS FinFET technologies,” in IEDM Tech. Dig., 2001, pp. 421–424
    [24] S. Tang, L. Chang, N. Lindert, Y.-K. Choi, W.-C. Lee, X. Huang, V. Subramanian, J. Bokor, T.-J. King, and C. Hu, “FinFET—A quasiplanar double-gate MOSFET,” in IEEE Int. Solid-State Circuits Conf., San Francisco, CA, 2001, pp. 118–119.
    [25] X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T.-J. King, J. Bokor, and C. Hu, “Sub-50 nm P-channel FinFET,” IEEE Trans. Electron Devices, vol. 48, no. 5, pp. 880–886, May 2001.
    [26] N. Lindert, L. Chang, Y.-K. Cho, E. H. Anderson, W.-C. Lee, T.-J. King, J. Bokor, and C.-M. Hu, “Sub-60-nm quasi-planar FinFETs fabricated using a simplified process,” IEEE Electron Device Lett., vol. 22, pp. 487–489, Oct. 2001.
    [27] H.Y. Chen, et al., “FinFET transistor device on SOI and method of fabrication”, US Patent 7,300,837, 2007
    [28] D. Fried, J. Duster and K. Kornegay, "Improved independent gate N-type FinFET fabrication and characterization", IEEE Electron Device Letters, vol. 24, no. 9, pp. 592-594, 2003.
    [29] H. Jiang, X. Liu, N. Xu, Y. He, G. Du, and X. Zhang, “Investigation of self-heating effect on hot carrier degradation in multiple-fin SOI FinFETs,” IEEE Electron Device Lett., vol. 36, no. 12, pp. 1258–1260, Dec. 2015.
    [30] A. J. Scholten, G. D. J. Smit, R. M. T. Pijper, et al., “Experimental assessment of self-heating in SOI FinFETs,” in Proc. IEDM Tech. Dig., Dec. 2009, pp. 305–308.
    [31] T. Takahashi, N. Beppu, K. Chen, S. Oda and K. Uchida, "Self-Heating Effects and Analog Performance Optimization of Fin-Type Field-Effect Transistors", Japanese Journal of Applied Physics, vol. 52, no. 4, pp. 04CC03, 2013.
    [32] F.L. Yang, et al., “35nm CMOS FinFETs,” in Symp. VLSI Tech. Dig., June 2002, pp. 104–105.
    [33] W.E.A. Haensch, P. Kulkarni and T. Yamashita “Structure and method to fabricate resistor on FinFET process,” U.S. patent 9,385,050, Jan. 6, 2011.
    [34] M. Shrivastava, et al., “Toward system on chip (SOC) development using FinFET technology: Challenges, solutions, process co-development and optimization guidelines,” IEEE Trans. Electron Devices, vol. 58, no. 6, pp. 1597–1607, Jun. 2011.
    [35] H.Y. Chen, C.-C. Huang, C.-C. Huang, C.-Y. Chang, Y.-C. Yeo, F.-L Yang, and C. Hu, “Scaling of CMOS FinFETs toward 10 nm,” in VLSI Symp. Tech. Dig., Oct. 2003, pp. 6–8.
    [36] D. M. Fried, et al., “ FinFET devices from bulk semiconductor and method for forming,“ U.S. Patent 6,642,090, Jun. 3, 2002.
    [37] B. S. Wood, F. A. Khaja, , et al., “Fin Doping by Hot Implant for 14nm FinFET Technology and Beyond”, ECS Trans. 2013 volume 58, issue 9, 249-256.
    [38] T. Park et al., “PMOS body-tied FinFET (omega MOSFET) characteristics,” in Proc. Device Research Conf., Jun. 23–25, 2003, pp. 33–34.
    [39] G. Eneman, D. P. Brunco, L. Witters, et al., “Stress simulations for optimal mobility group IV p-and nMOS FinFETs for the 14 nm node and beyond,” in Proc. IEEE IEDM, Dec. 2012, pp. 247–250.
    [40] M. Togo, J. W. Lee, L. Pantisano, T. Chiarella, R. Ritzenthaler, R. Krom, et al., “Phosphorus doped SiC source drain and SiGe channel for scaled bulk FinFETs,” in Proc. IEEE IEDM, Dec. 2012, pp. 18.2.1–18.2.4.
    [41] J. M. Yoon, et al., “Method of forming fin field effect transistor,” U.S. Patent 7,056,781, Jun. 6, 2006.
    [42] H. H. Lin, et al., “Method for fabricating a FinFET device,” U.S. Patent 8,652,894, Feb. 18, 2014.
    [43] M. Xu, et al., “Improved short channel effect control in bulk FinFETs with vertical implantation to form self-aligned halo and punch-through stop pocket,” IEEE Electron Device Lett., vol. 36, no. 7, pp. 648–650, Jul. 2015.
    [44] K. Okano, T. Izumida, H. Kawasaki, A. Kaneko, A. Yagishita, et al., “Process integration technology and device characteristics of CMOS FinFET on bulk silicon substrate with sub-10 nm fin width and 20 nm gate length,” in IEDM Tech. Dig., 2005, pp. 243–246.
    [45] T. Kanemura, T. Izumida, N. Aoki, et al., “Improvement of drive current in bulk-FinFET using full 3D process/device simulations,” in Proc. SISPAD 2006, pp. 131–134.
    [46] C. Shin, J. K. Kim and H.Y. Yu, “Threshold voltage variation-immune FinFET design with metal-interlayer-semiconductor source/drain structure,” Current Applied Physics, vol. 16, no. 6, pp. 618-622, Jun. 2016.
    [47] F. A. Khaja, H.-J. L. Gossmann, B. Colombeau, and T. Thanigaivelan, “Bulk FinFET junction isolation by heavy species and thermal implants,” in Proc. 20th Int. Conf. Ion Implantation Technol. (IIT), 2014, pp. 1–4.
    [48] T. Park et al., “PMOS body-tied FinFET (omega MOSFET) characteristics,” in Proc. Device Research Conf., Jun. 23–25, 2003, pp. 33–34.
    [49] G. Eneman, D. P. Brunco, L. Witters, et al., “Stress simulations for optimal mobility group IV p-and nMOS FinFETs for the 14 nm node and beyond,” in Proc. IEEE IEDM, Dec. 2012, pp. 247–250.
    [50] M. Togo, J. W. Lee, L. Pantisano, T. Chiarella, R. Ritzenthaler, R. Krom, et al., “Phosphorus doped SiC source drain and SiGe channel for scaled bulk FinFETs,” in Proc. IEEE IEDM, Dec. 2012, pp. 18.2.1–18.2.4.
    [51] S. Thompson, P. Packan, and M. Bohr, “MOS scaling: Transistor challenges for the 21st century,” Intel Technol. J., 3rd quarter 1998.
    [52] W. Saitoh, A. Itoh, S. Yamagami, and M. Asada, “Analysis of shortchannel Schottky S/D metal-oxide-semiconductor field-effect transistor on silicon-on insulator substrate and demonstration of sub-50-nm n-type devices and metal gate,” Jpn. J. Appl. Phys., vol. 38, no. 11, pp. 6226–6231, Nov. 1999.
    [53] J. N. Haddock, X. Zhang, S. Zheng, Q. Zhang, S. R. Marder, and B. Kippelen, “A comprehensive study of short channel effects in organic field-effect transistors,” Org. Electron., vol. 7, no. 1, pp. 46–54, 2006.
    [54] R. H. Yan, A. Ourmazd, and K. F. Lee, “Scaling the Si MOSFET: from bulk to SO1 to bulk,” IEEE Trans. Electron Dei,ices, vol. 39, pp. 1704-1710, 1992.
    [55] F. Balestra, M. Benachir, J. Brini, and G. Ghibaudo, “Analytical models of subthreshold swing and threshold voltage for thin- and ultrathin-film SOI MOSFETs,” IEEE Trans. Electron Devices, vol. 37, no. 11, pp. 2303– 2311, Nov. 1990.
    [56] A. N. Mutlu and M. Rahman, “Two-dimensional analytical model for drain induced barrier lowering (DIBL) in short channel MOSFETs,” in Proc. Southeastcon 2000 Conf., 2000, pp. 340–344.
    [57] M. K. M. Arshad, J. P. Raskin, V. Kilchytska, F. Andrieu, P. Scheiblin, O. Faynot, and D. Flandre, “Extended master modeling of DIBL in UTB and UTBB SOI MOSFETs,” IEEE Trans. Electron Devices, vol. 59, no. 1, pp. 247–251, Jan. 2012.
    [58] E. Takeda, C. Y. Yang, and A. Miura-Hamada, Hot-Carrier Effects in MOS Devices. New York: Academic, 1995, p. 68.
    [59] M. Shrivastava and H. Gossner “Drain extended MOS device for bulk FinFET technology” US Patent 8,629,420, 2014
    [60] M. Shrivastava, H. Gossner, and V. Ramgopal Rao, “A novel drainextended FinFET device for high-voltage high-speed applications,” IEEE Electron Device Lett., vol. 33, no. 10, pp. 1432–1434, Oct. 2012.
    [61] M. Shrivastava, et al., “High voltage semiconductor devices,” U.S. Patent 8 664 720, Mar. 4, 2014.
    [62] M. Shrivastava, et al., “High voltage semiconductor devices,” U.S. Patent 9 455 275, Sep. 27, 2016.

    QR CODE