簡易檢索 / 詳目顯示

研究生: 蕭秉諺
Hsiao, Ping-Yen
論文名稱: 在果蠅神經中表現人類LRRK2發現會影響其壽命,ATP和氧化壓力
Expression of Human LRRK2 affects lifespan, ATP and oxidative stress in animal model of Drosophila.
指導教授: 張慧雲
Chang, Hui-Yun
口試委員: 桑自剛
Sang, Tzu-Kang
范聖興
Fan, Seng-Sheen
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 系統神經科學研究所
Institute of Systems Neuroscience
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 38
中文關鍵詞: LRRK2蛋白三磷酸腺苷氧化壓力壽命
外文關鍵詞: LRRK2, ATP, Oxidative stress, Life-span
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 帕金森氏症是一種常見的神經退化性疾病,明顯的病徵有顫抖和運動功能障礙。這些病徵是因為病人大腦黑質多巴胺神經元凋亡引起。在帕金森氏症中LRRK2是其中一個重要的致病基因,LRRK2突變大多和家族遺傳有關。帕金森氏症病人表現突變LRRK2會造成a-synuclein 或tau蛋白的累積。大多數研究都把焦點集中在突變的LRRK2,但是正常LRRK2的功能尚未釐清。因此我們利用Gal4/UAS系統在果蠅神經表現人類LRRK2,研究LRRK2的正常功能。在我們的實驗中,發現LRRK2表現在果蠅的大腦或多巴胺神經細胞會降低果蠅死亡率。LRRK2表現在果蠅的眼睛,可以對抗死亡基因hid, reaper導致的細胞凋亡。除此之外,我们研究人類LRRK2對果蠅大腦中ATP量和氧化壓力之影響,這些研究資料顯示LRRK2表現可以透過某些機制提高神經細胞的ATP量和抗氧化壓力。我顯示LRRK2表現可以透過某些機制提高神經細胞的ATP量和抗氧化壓力。總而言之,雖然突變LRRK2所引起帕金森氏症機制是非常重要的,但是研究正常LRRK2的功能可增加我們瞭解突變的LRRK2如何致病,且對未來的治療是非常有幫助的。


    Parkinson’s disease is one of the common neuron degeneration diseases. The obvious symptom was shacking and movement dysfunction that is caused by degeneration dopamine neuron in substantia nigra. Leucine-rich repeat kinase 2 (LRRK2) is an important gene association with Parkinson’s disease. Mutation in LRRK2, the most common known cause of autosomal dominant PD, is also found in ‘sporadic’ cases. PD patient’s brain tissue with LRRK2 mutations has accumulation of a-synuclein and/or tau protein aggregates. Many previous studies focus on mutation LRRK2; however, normal LRRK2 function remains unclear. Therefore, we investigated the role of LRRK2 through GAL4/UAS system, in Drosophila. In our studies, we found LRRK2 expression in fly brains or DA neurons can decrease Drosophila mortality. Furthermore, we found that LRRK2 expression can partially rescue apoptotic cell death induced by Grim, or Hid. Finally, we showed that LRRK2 expression in neurons can increase ATP levels and oxidative stress. Taken together, our results suggest that LRRK2 function is critical for neuronal survival which might be useful to realize how LRRK2 mutation mediates Parkinson’s disease due to (LOF) loss of function, and may help for future therapeutic intervention.

    中文摘要----------------------------------------------------------------------------------4 Abstract-----------------------------------------------------------------------------------5 Introduction-----------------------------------------------------------------------------6 Materials & Methods-------------------------------------------------------------9 Drosophila transgenes------------------------------------------------------------9 Characterization of lifespan---------------------------------------------------9 ATP assay--------------------------------------------------------------------------------9 NADP/NADPH assay-----------------------------------------------------------------9 Western blot---------------------------------------------------------------------------10 Results-----------------------------------------------------------------------------------11 LRRK2 increases lifespan of Drosophila----------------------------------11 LRRK2 expression can against environment risk-----------------------12 Characterization of LRRK2 protein expression-------------------------12 LRRK2 affects ATP levels in neuronal cells-------------------------------13 LRRK2 affect oxidative stress in neuronal cells-------------------------13 LRRK2 expresses in fly eyes-------------------------------------------------14 LRRK2 plays crucial role in promoting neuronal survival------------14 Discussion------------------------------------------------------------------------------16 NADPH biochemistry---------------------------------------------------------------16 LRRK2 possibly associate with mitochondrial--------------------------16 LRRK2 expression change metabolic activity in neuron cell---------17 Reference----------------------------------------------------------------------------19 Acknowledgements------------------------------------------------------------------23 Figure------------------------------------------------------------------------------------24 Figure1. Drosophila Lifespan-----------------------------------------------------24 Figure2. Lifespan of Drosophila treats with paraquat--------------------26 Figure3. LRRK2 expression levels in neuron-------------------------------28 Figure4. ATP levels for two copies LRRK2 in neuron cell--------------29 Figure5. ATP levels for one copy LRRK2 in neuron cell-----------------30 Figure6. tNADP-NADPH /NADPH ratio in neuron cell for two copy LRRK2----------------------------------------------------------------------------------33 Figure7. tNADP-NADPH /NADPH ratio in neuron cell for one copy LRRK2----------------------------------------------------------------------------------35 Figure8. Scanning electron microscope (SEM) for fly eyes-------------37 Figure9. LRRK2 expression suppressed Grim, Reaper and Hid induced apoptosis using Drosophila eye as a model system ---------------------------------------------------------------------------------------------38

    1. C. A. Davie, A review of Parkinson's disease. British medical bulletin 86, 109 (2008).
    2. L. M. de Lau, M. M. Breteler, Epidemiology of Parkinson's disease. Lancet neurology 5, 525 (Jun, 2006).
    3. G. Logroscino, The role of early life environmental risk factors in Parkinson disease: what is the evidence? Environmental health perspectives 113, 1234 (Sep, 2005).
    4. F. Coppede, Genetics and epigenetics of Parkinson's disease. TheScientificWorldJournal 2012, 489830 (2012).
    5. H. M. Gao, B. Liu, J. S. Hong, Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 6181 (Jul 16, 2003).
    6. K. Ossowska et al., Degeneration of dopaminergic mesocortical neurons and activation of compensatory processes induced by a long-term paraquat administration in rats: implications for Parkinson's disease. Neuroscience 141, 2155 (Sep 15, 2006).
    7. P. Caboni et al., Rotenone, deguelin, their metabolites, and the rat model of Parkinson's disease. Chemical research in toxicology 17, 1540 (Nov, 2004).
    8. J. S. Bus, J. E. Gibson, Paraquat: model for oxidant-initiated toxicity. Environmental health perspectives 55, 37 (Apr, 1984).
    9. T. Z. Rzezniczak, L. A. Douglas, J. H. Watterson, T. J. Merritt, Paraquat administration in Drosophila for use in metabolic studies of oxidative stress. Analytical biochemistry 419, 345 (Dec 15, 2011).
    10. I. Martin, V. L. Dawson, T. M. Dawson, Recent advances in the genetics of Parkinson's disease. Annual review of genomics and human genetics 12, 301 (Sep 22, 2011).
    11. C. Paisan-Ruiz et al., Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44, 595 (Nov 18, 2004).
    12. A. B. West et al., Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proceedings of the National Academy of Sciences of the United States of America 102, 16842 (Nov 15, 2005).
    13. A. Zimprich et al., Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601 (Nov 18, 2004).
    14. J. C. Dachsel, M. J. Farrer, LRRK2 and Parkinson disease. Archives of neurology 67, 542 (May, 2010).
    15. M. Jaleel et al., LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson's disease mutants affect kinase activity. The Biochemical journal 405, 307 (Jul 15, 2007).
    16. L. J. Reichling, S. M. Riddle, Leucine-rich repeat kinase 2 mutants I2020T and G2019S exhibit altered kinase inhibitor sensitivity. Biochemical and biophysical research communications 384, 255 (Jun 26, 2009).
    17. M. Liu, B. Dobson, M. A. Glicksman, Z. Yue, R. L. Stein, Kinetic mechanistic studies of wild-type leucine-rich repeat kinase 2: characterization of the kinase and GTPase activities. Biochemistry 49, 2008 (Mar 9, 2010).
    18. R. J. Nichols et al., 14-3-3 binding to LRRK2 is disrupted by multiple Parkinson's disease-associated mutations and regulates cytoplasmic localization. The Biochemical journal 430, 393 (Sep 15, 2010).
    19. L. Parisiadou et al., Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. The Journal of neuroscience : the official journal of the Society for Neuroscience 29, 13971 (Nov 4, 2009).
    20. C. J. Gloeckner, A. Schumacher, K. Boldt, M. Ueffing, The Parkinson disease-associated protein kinase LRRK2 exhibits MAPKKK activity and phosphorylates MKK3/6 and MKK4/7, in vitro. Journal of neurochemistry 109, 959 (May, 2009).
    21. S. Zach, S. Felk, F. Gillardon, Signal transduction protein array analysis links LRRK2 to Ste20 kinases and PKC zeta that modulate neuronal plasticity. PloS one 5, e13191 (2010).
    22. Y. Imai et al., Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. The EMBO journal 27, 2432 (Sep 17, 2008).
    23. L. S. Tain et al., Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nature neuroscience 12, 1129 (Sep, 2009).
    24. S. Gehrke, Y. Imai, N. Sokol, B. Lu, Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature 466, 637 (Jul 29, 2010).
    25. A. H. Brand, N. Perrimon, Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401 (Jun, 1993).
    26. M. M. Wilhelmus, P. G. Nijland, B. Drukarch, H. E. de Vries, J. van Horssen, Involvement and interplay of Parkin, PINK1, and DJ1 in neurodegenerative and neuroinflammatory disorders. Free radical biology & medicine 53, 983 (Aug 15, 2012).
    27. A. M. Todd, B. E. Staveley, Expression of Pink1 with alpha-synuclein in the dopaminergic neurons of Drosophila leads to increases in both lifespan and healthspan. Genetics and molecular research : GMR 11, 1497 (2012).
    28. J. Fujii, Y. Ikeda, Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein. Redox report : communications in free radical research 7, 123 (2002).
    29. D. C. Angeles et al., Mutations in LRRK2 increase phosphorylation of peroxiredoxin 3 exacerbating oxidative stress-induced neuronal death. Human mutation 32, 1390 (Dec, 2011).
    30. T. D. Papkovskaia et al., G2019S leucine-rich repeat kinase 2 causes uncoupling protein-mediated mitochondrial depolarization. Human molecular genetics, (Jul 6, 2012).
    31. B. M. Zid et al., 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139, 149 (Oct 2, 2009).
    32. Y. C. Shen et al., Activating oxidative phosphorylation by a pyruvate dehydrogenase kinase inhibitor overcomes sorafenib resistance of hepatocellular carcinoma. British journal of cancer 108, 72 (Jan 15, 2013).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE