簡易檢索 / 詳目顯示

研究生: 曾才碩
Tseng, Tsai-Shuo
論文名稱: 以3ω法量測複合層鑽石薄膜之熱傳導性質
Thermal Conductivity Measurements for Hybrid Granular Structured Diamond Films Using 3ω Method
指導教授: 戴念華
Tai, Nyan-Hwa
口試委員: 李紫原
Chi-Young Lee
陳盈潔
Ying-Chieh Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 81
中文關鍵詞: 複合層鑽石薄膜3ω法熱傳導性質
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究使用微波輔助化學氣相沉積法沉積鑽石薄膜於矽基板上,成長的薄膜種類包括單層及雙層複合膜,雙層複合膜是由兩層不同大小的鑽石晶粒所組合而成,而我們期待從這些參數中找出符合我們需求的薄膜,再利用SEM及AFM觀察其表面形貌,以XRD確認晶體結構,並利用TEM觀察微結構及拉曼光譜儀確定薄膜的性質,最後利用三倍頻法量測其熱傳導係數。
      以3ω法量測本實驗製備的薄膜之熱傳導特性,製造過程為一簡單的黃光微影製程,超奈米晶鑽石薄膜及奈米晶鑽石薄膜均可以順利將π字型的電極圖案完整鍍覆於薄膜表面,然而微米晶鑽石薄膜卻無法以相同步驟作出電極,推測是因為微米晶鑽石薄膜的高低差極大所導致,因此造成金電極容易剝離。
      在NCD/MCD的試片中,NCD為上層,MCD為底層,當厚度比(下層/上層)從0增加至0.878時,其熱傳導係數由30.34 W/mK提升至41.46 W/mK;在UNCD/MCD的試片中,當厚度比從0提升至0.925時,其熱傳導係數由8.68 W/mK增加至16.94 W/mK。


      In this study, we fabricated the single layer and hybrid granular structured diamond films on silicon wafer by using the microwave plasma enhanced chemical vapor deposition (MPECVD).The hybrid diamond films are composed of two kinds of diamond grain size. We wish we can find the optimized parameter. We observed the morphologies of films by SEM and detected the roughness of surface by AFM. The crystal structure of our samples are analyzed by using X-ray diffractometer and TEM. Also, the bonding properties are characterized by Raman Spectroscopy. In the end, we measure the thermal conductivity by 3ω method.
    We deposited NCD film as top layer, and MCD as bottom layer in the NCD/MCD sample. When the thickness ratio (bottom/top) increase from 0 to 0.878, the thermal conductivity get higher from 30.34 W/mK to 41.46 W/mK. When the thickness ratio of UNCD/MCD increase from 0 to 0.925, thermal conductivity increase from 8.68 W/mK to 16.94 W/mK. Furthermore, UNCD/MCD have the smaller roughness than NCD/MCD.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 第一章 前言 1 第二章 文獻回顧 2 2.1 鑽石的基本性質 2 2.2 鑽石薄膜 3 2.2.1 人造鑽石的發展歷史 3 2.2.2 鑽石薄膜分類 4 2.3 鑽石薄膜成核機制 5 2.3.1 基板成核的前處理 6 2.3.2 基板對成核的影響 7 2.4 化學氣相沉積鑽石薄膜 8 2.4.1 在氫氣電漿系統下沉積鑽石薄膜 8 2.4.2 在氬氣電漿系統下沉積鑽石薄膜 9 2.5 鑽石薄膜的鑑定 10 2.6 鑽石薄膜的熱傳導性質 12 2.6.1 熱傳導原理 12 2.6.2 鑽石薄膜的熱傳導性質 12 第三章 實驗方法與分析 20 3.1 製備鑽石薄膜 20 3.1.1 以超音波震盪在矽基板上成核 20 3.1.2 在氫氣電漿下沉積微米晶鑽石薄膜(MCD) 20 3.1.3 在氬氣電漿下沉積超奈米晶鑽石薄膜(UNCD) 21 3.1.4 在氫氬氣電漿下沉積奈米晶鑽石薄膜(NCD) 22 3.1.5 雙層鑽石薄膜之成長 22 3.2 熱傳導係數的量測 22 3.2.1 電極圖形曝光顯影 23 3.2.2 電極製作 24 3.2.3 3ω法量測原理 24 3.2.4 Temperature coefficient of resistance, TCR之計算 27 3.3 實驗儀器及材料分析工具 27 3.3.1 微波電漿輔助化學氣相沉積系統 28 3.3.2 超音波震盪器 28 3.3.3 直流濺鍍系統(DC Sputter System) 28 3.3.4 奈米壓印系統 29 3.3.5 場發射掃描式電子顯微鏡 29 3.3.6 高解析穿透式電子顯微鏡 29 3.3.7 拉曼光譜儀 29 3.3.8 X光繞射分析儀 30 3.3.9 原子力顯微鏡 (AFM) 30 3.3.10 三倍頻法熱傳導量測系統 31 3.3.11 四點探針電阻量測儀 31 第四章 結果與討論 40 4.1 單層薄膜之形貌與鑑定 40 4.1.1 超奈米晶鑽石薄膜(UNCD) 40 4.1.2 奈米晶鑽石薄膜(NCD) 41 4.1.3 微米晶鑽石薄膜(MCD) 42 4.2 單層鑽石薄膜的熱傳導分析 43 4.2.1 奈米晶鑽石薄膜的熱傳導係數量測 43 4.2.2 超奈米晶鑽石薄膜的熱傳導係數量測 44 4.3 雙層鑽石薄膜的性質及熱傳導分析 44 4.3.1 雙層鑽石薄膜UNCD/NCD/Si系統的形貌與鑑定 44 4.3.2 雙層鑽石薄膜UNCD/MCD/Si系統的形貌與鑑定 45 4.3.3 雙層鑽石薄膜NCD/MCD/Si系統的形貌與鑑定 46 4.3.4 雙層鑽石薄膜NCD/UNCD/Si系統的形貌與鑑定 46 4.4 雙層鑽石薄膜之熱傳導係數 47 4.4.1 比較UNCD/MCD與UNCD/NCD之熱傳導係數 47 4.4.2 比較NCD/UNCD與NCD/MCD之熱傳導係數 48 4.4.3 比較UNCD/MCD與NCD/MCD之熱傳導係數 49 第五章 結論 75 參考文獻 76

    [1] H. O. Pierson, "Handbook of carbon, graphite, diamond and fullerenes," Noyes publications, New Jersey, 1993.
    [2] R. F. Davis, "Diamond films and coatings: development, properties, and applications," Noyes Publications, New Jersey, 1993.
    [3] P. W. May, "CVD diamond: a new technology for the future?" Endeavour, Vol. 19, pp. 101-106, 1995.
    [4] H. Liu and D. S. Dandy, "Diamond chemical vapor deposition: Nucleation and Early Growth Stages," Noyes Publications, New Jersey, 1993.
    [5] B. Dischler and C. Wild, "Low-pressure synthetic diamond: manufacturing and applications," Springer, Heidelberg, 1998.
    [6] T. Sharda and S. Bhattacharyya, "Advances in nanocrystalline diamond," Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publications, California, 2003.
    [7] B. Bhushan, "Tribology Issues and Opportunities in MEMS," Kluwer Academic Publishers, Dordrecht, Netherlands, 1998.
    [8] J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook, "High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond," Science, Vol. 297, pp. 1670-1672, 2002 .
    [9] F. J. Himpsel, J. A. Knapp, J. A. Van Vechten, and D. E. Eastman, "Quantum photoyield of diamond (111) – A stable negative-affinity emitter," Physical Review B, Vol. 20, pp. 624, 1979.
    [10] E. Erlich and W. D. Hausel, "Diamond deposits: origin, exploration, and history of discovery," Society for Mining, Metallurgy, and Exploration, Littleton, CO, USA, 2002.
    [11] P. W. Bridgman, "Synthetic diamonds," Scientific American, Vol. 193, pp. 42-46, 1955.
    [12] J. C. Angus, H. A. Will, and W. S. Stanko, "Growth of Diamond Seed Crystals by Vapor Deposition," Journal of Applied Physics, Vol. 39, pp. 2915-2922, 1968.
    [13] S. Matzumoto, Y. Sato, M. Kamo, and N. Setaka, "Vapor deposition of diamond particles from methane," Japanese Journal of Applied Physics 2, Vol. 21, pp. 183-185, 1982.
    [14] M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka, "Diamond synthesis from gas phase in microwave plasma," Journal of Crystal Growth, Vol. 62, pp. 642-644, 1983.
    [15] D. M. Gruen, S. Liu, A. R. Krauss, J. Luo, and X. Pan, "Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions," Applied Physics Letters, Vol. 64, pp. 1502-1504, 1994.
    [16] A. R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D. C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M. N. Gardos, H. G. Busmann, E. M. Meyer, and M. Q. Ding, "Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices," Diamond and Related Materials, Vol. 10, pp. 1952-1961, 2001.
    [17] M. A. Brewer, I. G. Brown, P. J. Evans, and A. Hoffman, "Diamond film growth on Ti-implanted glassy carbon," Applied Physics Letters, Vol. 63, pp. 1631-1633, 1993.
    [18] S. Yugo, T. Kanai, T. Kimura, and T. Muto, "Generation of diamond nuclei by electric field in plasma chemical vapor deposition," Applied Physics Letters, Vol. 58, pp. 1036-1038, 1991.
    [19] M. Ece, B. Oral, J. Patscheider, and K. H. Ernst, "Effect of organic precursors on diamond nucleation on silicon," Diamond and Related Materials, Vol. 4, pp. 720-724, 1995.
    [20] L. Constant, C. Speisser, and F. Le Normand, "HFCVD diamond growth on Cu (1 1 1). Evidence for carbon phase transformations by in situ AES and XPS." Surface Science, Vol. 387, pp. 28-43, 1997.
    [21] Z. Sitar, W. Liu, P. C. Yang, C. A. Wolden, R. Schlesser, and J. T. Prater, "Heteroepitaxial nucleation of diamond on nickel." Diamond & Related Materials, Vol. 7, pp. 276-282, 1998.
    [22] R. Haubner, A. Lindlbauer, and B. Lux, "Diamond nucleation and growth on refractory metals using microwave plasma deposition." Journal of Refractory Materials and Hard Material, Vol. 14, pp. 119-125, 1996.
    [23] C. J. Rennick, A. G. Smith, J. A. Smith, J. B. Wills, A. J. Orr-Ewing, M. N. R. Ashfold, Y. A. Mankelevich, and N. V. Suetin, "Improved characterisation of C2 and CH radical number density distributions in a DC arc jet used for diamond chemical vapour deposition," Diamond and Related Materials, Vol. 13, pp. 561-568, 2004.
    [24] A. R. Krauss, O. Auciello, M. Q. Ding, D. M. Gruen, Y. Huang, V. V. Zhirnov, E. I. Givargizov, A. Breskin, R. Chechen, E. Shefer, V. Konov, S. Pimenov, A. Karabutov, A. Rakhimov, and N. Suetin, "Electron field emission for ultrananocrystalline diamond films," Journal of Applied Physics, Vol. 89, pp. 2958-2967, 2001.
    [25] D. M. Gruen, "Nanocrystalline diamond films," Annual Review of Materials Science, Vol. 29, pp. 211-259, 1999.
    [26] T. G. McCauley, D. M. Gruen, and A. R. Krauss, "Temperature dependence of the growth rate for nanocrystalline diamond films deposited from an Ar/CH4 microwave plasma," Applied Physics Letters, Vol. 73, pp. 1646-1648, 1998.
    [27] I. N. Lin, H. C. Chen, C. S. W, Y. R. Lee, and C. Y. Lee, "Nanocrystalline diamond microstructures from Ar/H2/CH4-plasma chemical vapour deposition," CrystEngComm, Vol. 13, pp. 6082-6089, 2011.
    [28] K. J. Sankaran, K. Srinivasu, H. C. Chen, C. L. Dong, K. C. Leou, C. Y. Lee, N. H. Tai, and I. N. Lin, "Improvement in plasma illumination properties of ultrananocrystalline diamond films by grain boundary engineering," Journal of Applied Physics, Vol. 114, pp. 054304(11), 2013.
    [29] R. Berman, P. R. W. Hudson, and M. Martinez, "Nitrogen in diamond: evidence from thermal conductivity," Journal of Physics C: Solid State Physics, Vol. 8, pp. 430-434, 1975.
    [30] M. A. Angadi, T. Watanabe, A. Bodapati, X. Xiao, and O. Auciello, J. A. Carlisle, J. A. Eastman, P. Keblinski, P. K. Schelling, and S. R. Phillpot, "Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films," Journal of Applied Physics, Vol. 99, pp. 114301(6), 2006.
    [31] V. Ralchenko, S. Pimenov, V. Konov, A. Khomich, A. Saveliev, A. Popovich, I. Vlasov, E. Zavedeev, A. Bozhko, E. Loubnin, and R. Khmelnitskii, "Nitrogenated nanocrystalline diamond films: Thermal and optical properties," Diamond & Related Materials, Vol. 16, pp. 2067-2073, 2007.
    [32] M. Shamsa, S. Ghosh, I. Calizo, V. Ralchenko, A. Popovich, and A. A. Balandin, "Thermal conductivity of nitrogenated ultrananocrystalline diamond films on silicon, " Journal of Applied Physics, Vol. 103, pp. 083538(8), 2008.
    [33] V. Goyal, S. Subrina, D. L. Nika, and A. A. Balandin, "Reduced thermal resistance of the silicon-synthetic diamond composite substrates at elevated temperatures," Applied Physical Letters, Vol. 97, pp. 031904(3), 2010.
    [34] T. Guillemet, A. Kusiak, L. Fan, J. M. Heintz, N. Chandra, Y. Zhou, J. F. Silvain, Y. Lu, and J. L. Battaglia, "Thermal Characterization of Diamond Films through Modulated Photothermal Radiometry," ACS Applied Materials & Interfaces, Vol. 6, pp. 2095-2102, 2014.
    [35] M. A. Prelas, G. Popovici, and L.K. Bigelow, "Handbook of Industrial Diamonds and Diamond Films," CRC Press, New York, 1997.
    [36] D.G. Cahill, "Thermal conductivity measurement from 30~750K: the 3ω method," Review of Scientific Instruments, Vol. 61, pp. 802, 1990.
    [37] D. G. Cahill, M. Katiyar, and J. R. Abelson, "Thermal conductivity of a-Si:H thin films," Physical Review B, Vol. 50, pp. 6077-6082, 1994
    [38] T. M. Tritt, "Thermal Conductivity: Theory, Properties, and Applications," Springer Science & Business Media, Berlin, 2004.
    [39] J. P. Holman, "Heat Transfer," 8th ed., McGraw-Hill publications, New York, 2000.
    [40] K. Yamanouchi, N. Sakurai, and T. Satoh, "SAW propagation characteristics and fabrication technology of piezoelectric thin film/diamond structure," in Ultrasonics Symposium, Montréal, Québec, Canada, 1989. Proceedings. Vol. 1, pp. 351-354, 1989.
    [41] 張庭熏,以電泳孕核方式成長超奈米晶鑽石薄膜於矽基板與碳化鎢基板之研究,碩士論文,國立清華大學材料科學與工程學系,台灣新竹,2011
    [42] S. C. Lou, C. Chen, K. Y. Teng, C. Y. Teng, and I. N. Lin, "Synthesis of diamond nanotips for enhancing the plasma illumination characteristics of capacitive-type plasma devices," Journal of Vacuum Science & Technology B, Vol. 31, pp. 02B109(8), 2013.
    [43] T. Chang, S. Lou, H. Chen, C. Chen, C. Lee, N. Tai, and I. Lin, "Enhancing the plasma illumination behaviour of microplasma devices using microcrystalline/ultrananocrystalline hybrid diamond materials as cathodes," Nanoscale, Vol. 5, pp. 7467-7465, 2013.
    [44] R. E. Hummel, "Electronic Properties of Materials," 3rd ed., Springer publication, New York, 2000.
    [45] C. Norggtrd and A. Matthews, "Two-step diamond growth for reduced surface roughness," Diamond and Related Materials, Vol. 5, pp. 332-337, 1996.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE