研究生: |
曾才碩 Tseng, Tsai-Shuo |
---|---|
論文名稱: |
以3ω法量測複合層鑽石薄膜之熱傳導性質 Thermal Conductivity Measurements for Hybrid Granular Structured Diamond Films Using 3ω Method |
指導教授: |
戴念華
Tai, Nyan-Hwa |
口試委員: |
李紫原
Chi-Young Lee 陳盈潔 Ying-Chieh Chen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 複合層鑽石薄膜 、3ω法 、熱傳導性質 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用微波輔助化學氣相沉積法沉積鑽石薄膜於矽基板上,成長的薄膜種類包括單層及雙層複合膜,雙層複合膜是由兩層不同大小的鑽石晶粒所組合而成,而我們期待從這些參數中找出符合我們需求的薄膜,再利用SEM及AFM觀察其表面形貌,以XRD確認晶體結構,並利用TEM觀察微結構及拉曼光譜儀確定薄膜的性質,最後利用三倍頻法量測其熱傳導係數。
以3ω法量測本實驗製備的薄膜之熱傳導特性,製造過程為一簡單的黃光微影製程,超奈米晶鑽石薄膜及奈米晶鑽石薄膜均可以順利將π字型的電極圖案完整鍍覆於薄膜表面,然而微米晶鑽石薄膜卻無法以相同步驟作出電極,推測是因為微米晶鑽石薄膜的高低差極大所導致,因此造成金電極容易剝離。
在NCD/MCD的試片中,NCD為上層,MCD為底層,當厚度比(下層/上層)從0增加至0.878時,其熱傳導係數由30.34 W/mK提升至41.46 W/mK;在UNCD/MCD的試片中,當厚度比從0提升至0.925時,其熱傳導係數由8.68 W/mK增加至16.94 W/mK。
In this study, we fabricated the single layer and hybrid granular structured diamond films on silicon wafer by using the microwave plasma enhanced chemical vapor deposition (MPECVD).The hybrid diamond films are composed of two kinds of diamond grain size. We wish we can find the optimized parameter. We observed the morphologies of films by SEM and detected the roughness of surface by AFM. The crystal structure of our samples are analyzed by using X-ray diffractometer and TEM. Also, the bonding properties are characterized by Raman Spectroscopy. In the end, we measure the thermal conductivity by 3ω method.
We deposited NCD film as top layer, and MCD as bottom layer in the NCD/MCD sample. When the thickness ratio (bottom/top) increase from 0 to 0.878, the thermal conductivity get higher from 30.34 W/mK to 41.46 W/mK. When the thickness ratio of UNCD/MCD increase from 0 to 0.925, thermal conductivity increase from 8.68 W/mK to 16.94 W/mK. Furthermore, UNCD/MCD have the smaller roughness than NCD/MCD.
[1] H. O. Pierson, "Handbook of carbon, graphite, diamond and fullerenes," Noyes publications, New Jersey, 1993.
[2] R. F. Davis, "Diamond films and coatings: development, properties, and applications," Noyes Publications, New Jersey, 1993.
[3] P. W. May, "CVD diamond: a new technology for the future?" Endeavour, Vol. 19, pp. 101-106, 1995.
[4] H. Liu and D. S. Dandy, "Diamond chemical vapor deposition: Nucleation and Early Growth Stages," Noyes Publications, New Jersey, 1993.
[5] B. Dischler and C. Wild, "Low-pressure synthetic diamond: manufacturing and applications," Springer, Heidelberg, 1998.
[6] T. Sharda and S. Bhattacharyya, "Advances in nanocrystalline diamond," Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publications, California, 2003.
[7] B. Bhushan, "Tribology Issues and Opportunities in MEMS," Kluwer Academic Publishers, Dordrecht, Netherlands, 1998.
[8] J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook, "High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond," Science, Vol. 297, pp. 1670-1672, 2002 .
[9] F. J. Himpsel, J. A. Knapp, J. A. Van Vechten, and D. E. Eastman, "Quantum photoyield of diamond (111) – A stable negative-affinity emitter," Physical Review B, Vol. 20, pp. 624, 1979.
[10] E. Erlich and W. D. Hausel, "Diamond deposits: origin, exploration, and history of discovery," Society for Mining, Metallurgy, and Exploration, Littleton, CO, USA, 2002.
[11] P. W. Bridgman, "Synthetic diamonds," Scientific American, Vol. 193, pp. 42-46, 1955.
[12] J. C. Angus, H. A. Will, and W. S. Stanko, "Growth of Diamond Seed Crystals by Vapor Deposition," Journal of Applied Physics, Vol. 39, pp. 2915-2922, 1968.
[13] S. Matzumoto, Y. Sato, M. Kamo, and N. Setaka, "Vapor deposition of diamond particles from methane," Japanese Journal of Applied Physics 2, Vol. 21, pp. 183-185, 1982.
[14] M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka, "Diamond synthesis from gas phase in microwave plasma," Journal of Crystal Growth, Vol. 62, pp. 642-644, 1983.
[15] D. M. Gruen, S. Liu, A. R. Krauss, J. Luo, and X. Pan, "Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions," Applied Physics Letters, Vol. 64, pp. 1502-1504, 1994.
[16] A. R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D. C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M. N. Gardos, H. G. Busmann, E. M. Meyer, and M. Q. Ding, "Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices," Diamond and Related Materials, Vol. 10, pp. 1952-1961, 2001.
[17] M. A. Brewer, I. G. Brown, P. J. Evans, and A. Hoffman, "Diamond film growth on Ti-implanted glassy carbon," Applied Physics Letters, Vol. 63, pp. 1631-1633, 1993.
[18] S. Yugo, T. Kanai, T. Kimura, and T. Muto, "Generation of diamond nuclei by electric field in plasma chemical vapor deposition," Applied Physics Letters, Vol. 58, pp. 1036-1038, 1991.
[19] M. Ece, B. Oral, J. Patscheider, and K. H. Ernst, "Effect of organic precursors on diamond nucleation on silicon," Diamond and Related Materials, Vol. 4, pp. 720-724, 1995.
[20] L. Constant, C. Speisser, and F. Le Normand, "HFCVD diamond growth on Cu (1 1 1). Evidence for carbon phase transformations by in situ AES and XPS." Surface Science, Vol. 387, pp. 28-43, 1997.
[21] Z. Sitar, W. Liu, P. C. Yang, C. A. Wolden, R. Schlesser, and J. T. Prater, "Heteroepitaxial nucleation of diamond on nickel." Diamond & Related Materials, Vol. 7, pp. 276-282, 1998.
[22] R. Haubner, A. Lindlbauer, and B. Lux, "Diamond nucleation and growth on refractory metals using microwave plasma deposition." Journal of Refractory Materials and Hard Material, Vol. 14, pp. 119-125, 1996.
[23] C. J. Rennick, A. G. Smith, J. A. Smith, J. B. Wills, A. J. Orr-Ewing, M. N. R. Ashfold, Y. A. Mankelevich, and N. V. Suetin, "Improved characterisation of C2 and CH radical number density distributions in a DC arc jet used for diamond chemical vapour deposition," Diamond and Related Materials, Vol. 13, pp. 561-568, 2004.
[24] A. R. Krauss, O. Auciello, M. Q. Ding, D. M. Gruen, Y. Huang, V. V. Zhirnov, E. I. Givargizov, A. Breskin, R. Chechen, E. Shefer, V. Konov, S. Pimenov, A. Karabutov, A. Rakhimov, and N. Suetin, "Electron field emission for ultrananocrystalline diamond films," Journal of Applied Physics, Vol. 89, pp. 2958-2967, 2001.
[25] D. M. Gruen, "Nanocrystalline diamond films," Annual Review of Materials Science, Vol. 29, pp. 211-259, 1999.
[26] T. G. McCauley, D. M. Gruen, and A. R. Krauss, "Temperature dependence of the growth rate for nanocrystalline diamond films deposited from an Ar/CH4 microwave plasma," Applied Physics Letters, Vol. 73, pp. 1646-1648, 1998.
[27] I. N. Lin, H. C. Chen, C. S. W, Y. R. Lee, and C. Y. Lee, "Nanocrystalline diamond microstructures from Ar/H2/CH4-plasma chemical vapour deposition," CrystEngComm, Vol. 13, pp. 6082-6089, 2011.
[28] K. J. Sankaran, K. Srinivasu, H. C. Chen, C. L. Dong, K. C. Leou, C. Y. Lee, N. H. Tai, and I. N. Lin, "Improvement in plasma illumination properties of ultrananocrystalline diamond films by grain boundary engineering," Journal of Applied Physics, Vol. 114, pp. 054304(11), 2013.
[29] R. Berman, P. R. W. Hudson, and M. Martinez, "Nitrogen in diamond: evidence from thermal conductivity," Journal of Physics C: Solid State Physics, Vol. 8, pp. 430-434, 1975.
[30] M. A. Angadi, T. Watanabe, A. Bodapati, X. Xiao, and O. Auciello, J. A. Carlisle, J. A. Eastman, P. Keblinski, P. K. Schelling, and S. R. Phillpot, "Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films," Journal of Applied Physics, Vol. 99, pp. 114301(6), 2006.
[31] V. Ralchenko, S. Pimenov, V. Konov, A. Khomich, A. Saveliev, A. Popovich, I. Vlasov, E. Zavedeev, A. Bozhko, E. Loubnin, and R. Khmelnitskii, "Nitrogenated nanocrystalline diamond films: Thermal and optical properties," Diamond & Related Materials, Vol. 16, pp. 2067-2073, 2007.
[32] M. Shamsa, S. Ghosh, I. Calizo, V. Ralchenko, A. Popovich, and A. A. Balandin, "Thermal conductivity of nitrogenated ultrananocrystalline diamond films on silicon, " Journal of Applied Physics, Vol. 103, pp. 083538(8), 2008.
[33] V. Goyal, S. Subrina, D. L. Nika, and A. A. Balandin, "Reduced thermal resistance of the silicon-synthetic diamond composite substrates at elevated temperatures," Applied Physical Letters, Vol. 97, pp. 031904(3), 2010.
[34] T. Guillemet, A. Kusiak, L. Fan, J. M. Heintz, N. Chandra, Y. Zhou, J. F. Silvain, Y. Lu, and J. L. Battaglia, "Thermal Characterization of Diamond Films through Modulated Photothermal Radiometry," ACS Applied Materials & Interfaces, Vol. 6, pp. 2095-2102, 2014.
[35] M. A. Prelas, G. Popovici, and L.K. Bigelow, "Handbook of Industrial Diamonds and Diamond Films," CRC Press, New York, 1997.
[36] D.G. Cahill, "Thermal conductivity measurement from 30~750K: the 3ω method," Review of Scientific Instruments, Vol. 61, pp. 802, 1990.
[37] D. G. Cahill, M. Katiyar, and J. R. Abelson, "Thermal conductivity of a-Si:H thin films," Physical Review B, Vol. 50, pp. 6077-6082, 1994
[38] T. M. Tritt, "Thermal Conductivity: Theory, Properties, and Applications," Springer Science & Business Media, Berlin, 2004.
[39] J. P. Holman, "Heat Transfer," 8th ed., McGraw-Hill publications, New York, 2000.
[40] K. Yamanouchi, N. Sakurai, and T. Satoh, "SAW propagation characteristics and fabrication technology of piezoelectric thin film/diamond structure," in Ultrasonics Symposium, Montréal, Québec, Canada, 1989. Proceedings. Vol. 1, pp. 351-354, 1989.
[41] 張庭熏,以電泳孕核方式成長超奈米晶鑽石薄膜於矽基板與碳化鎢基板之研究,碩士論文,國立清華大學材料科學與工程學系,台灣新竹,2011
[42] S. C. Lou, C. Chen, K. Y. Teng, C. Y. Teng, and I. N. Lin, "Synthesis of diamond nanotips for enhancing the plasma illumination characteristics of capacitive-type plasma devices," Journal of Vacuum Science & Technology B, Vol. 31, pp. 02B109(8), 2013.
[43] T. Chang, S. Lou, H. Chen, C. Chen, C. Lee, N. Tai, and I. Lin, "Enhancing the plasma illumination behaviour of microplasma devices using microcrystalline/ultrananocrystalline hybrid diamond materials as cathodes," Nanoscale, Vol. 5, pp. 7467-7465, 2013.
[44] R. E. Hummel, "Electronic Properties of Materials," 3rd ed., Springer publication, New York, 2000.
[45] C. Norggtrd and A. Matthews, "Two-step diamond growth for reduced surface roughness," Diamond and Related Materials, Vol. 5, pp. 332-337, 1996.