簡易檢索 / 詳目顯示

研究生: 戴碧寬
Day, Biy-Kuang
論文名稱: 兩種宇纖維叢構造方式的等同與分類空間的應用
An Equivalence between two Constructions of Universal Bundles and Applications of Classifying Spaces
指導教授: 鄭志豪
Teh, Jyh Haur
口試委員: 潘戍衍
Pan, Shu-Yen
何南國
Ho, Nan Kuo
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 34
中文關鍵詞: 宇纖維叢分類空間鄰域變形收縮拓樸群
外文關鍵詞: universal bundle, classifying, neighborhood, retract
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文將分別回顧米爾格倫-斯廷羅德宇纖維叢構造法以及柵欄宇纖維叢構造法,並且證明兩者同構。另一方面,在回顧宇纖維叢與鄰域變形收縮的關聯後,本文亦將證明當拓樸群對(G,Z)為鄰域變形收縮對時,其商映射G→G/Z會形成塞爾纖維叢。


    This thesis reviews the Milgram-Steenrod construction and bar construction of universal bundles, and prove that these two constructions are equivalent. After reviewing relation between neighborhood deformation retract and the universal bundles, we prove that if a pair of topological group (G,Z) is a neighborhood deformation retract pair, then the quotient map G→G/Z is actually a Serre fibration.

    1 Compactly generated topological groups 5 2 Milgram-Steenrod construction 7 3 Bar construction 16 4 The equivalent between two constructions 20 5 Neighborhood deformation retract and the fibration EG→BG 23 6 Neighborhood deformation retracts and brations 27

    [1] M. Aguilar, S. Gitler, C. Prieto: Algebraic Topology from a Homotopical Viewpoint, Springer-Verlag New York, Inc., (2002).
    [2] A. Dold, R. Lashof, Principal quasi brations and bre homotopy equivalence of bundles, Illinois J. of Math., Vol. 3, (1959), 285-305.
    [3] M. Fuchs, A modi ed Dold-Lashof construction that does classify H-principal brations, Math. Ann., Vol. 192 (1971), 328-340.
    [4] H. Hironaka, Triangulation of algebraic sets, Proc. Sympos. Pure Math., Vol. 29, Amer. Math. Soc., Providence, R.L., (1975), 165-185.
    [5] P. Lima-Filho, Completions and Fibrations for Topological Monoids, Trans. AMS, Vol. 340, no. 1, (1993), 127-147.
    [6] J. P. May, The geometry of iterated loop spaces, Lecture Notes in Math., Vol. 271., Spring-Verlag Berlin Heidelberg New York, (1972).
    [7] J. P. May, Classifying spaces and brations, Mem. Amer. Math. Soc., Vol. 155, (1975).
    [8] J. Milnor, Construction of universal bundles I, Ann. Math. (2), Vol. 63, (1956), 272-284.
    [9] J. Milnor, Construction of universal bundles II, Ann. Math. (2), Vol. 63, (1956), 430-436.
    [10] R. A. Piccinini, Mauro Sprea co, The Milgram-Steenrod Construction of Classifying Spaces for Topological Groups, Expositiones Mathematicae, Vol. 16, no. 2, (1998), 097-132.
    [11] I. R. Shafarevich, Basic Algebraic Geometry, Springer-Verlag Berlin Heidelberg New York, (1974).
    [12] N. E. Steenrod, A Convenient Category Of Topological Spaces, Mich. Math. J., Vol. 14, (1967), 133-152.
    [13] N. E. Steenrod, Milgram's classifying space of a topological group, Topology, Vol. 7, (1968), 349-368.

    QR CODE