研究生: |
黃瑋軒 Huang, Wei-Xuan |
---|---|
論文名稱: |
還原氧化石墨烯碳複合薄膜於正滲透系統之應用 Reduced Graphene Oxide Carbon-based Thin-film Composite Membrane for the Application in Forward Osmosis |
指導教授: |
戴念華
Tai, Nyan-Hwa 李紫原 Lee, Chi-Young |
口試委員: |
林冠佑
Lin, Guan-you 洪仁陽 Horng, Ren-Yang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 複合薄膜 、正滲透 、還原氧化石墨烯 |
外文關鍵詞: | thin-film composite membrane, forward osmisis, reduced graphene oxide |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的為開發一具有高通量及低逆溶質擴散之碳複合薄膜,並應用於正滲透(Forward Osmosis, FO)分離系統中。實驗分為兩個階段:第一階段首要探討以市售混和纖維素酯(Mixed Cellulose Ester, MCE)作為基材膜,還原氧化石墨烯(Reduced Graphene Oxide, rGO)作為阻鹽層之可行性,並分析rGO厚度對FO效能之影響,找出最佳厚度參數。此外也進一步使用聚多巴胺(Polydopamine)對rGO表面進行親水改質,試圖提升水通量。於此基礎下,第二階段將使用不織布取代MCE作為基材膜,並以塗佈的方式形成奈米碳管(Carbon Nanotube, CNT)層,再以浸鍍的方式被覆一層聚乙烯亞胺(Polyetherimide, PEI),最後結合rGO及PDA完成碳複合膜之製備,研究將討論基材膜的改變對薄膜效能的影響。結果顯示,由於不織布表面較MCE粗糙許多,需要較厚的rGO才能覆蓋完整,此外PEI的帶電特性,能增加CNT和rGO之貼覆性,提升FO效能,以進流液為去離子水,提取液為1M氯化鈉水溶液的FO測試條件下,具有水通量25.74 LMH及逆溶質擴散5.94 gMH的優良成果,顯示本研究之碳複合薄膜於FO系統應用深具潛力。
The work aims to develop a carbon-based thin-film composite (TFC) membrane with great performance in forward osmosis (FO) application. This study has two subjects; the first subject is focusing on the study of feasibility of salt ion rejection of the reduced graphene oxide (rGO) film using mixed cellulose ester (MCE) filter paper as the supporting layer. This study find that the rGO thickness plays a significant role of rGO on the water flux and salt rejection. In addition, the rGO membrane coated with polydopamine (PDA) possesses superhydrophilic property which significantly enhances the FO performance. On this basic, nonwoven fabric is adopted as the substrate on the second subject of this study. Using the results obtained from the first subject and casting the carbon nanotubes (CNTs) on the nonwoven fabric through casting followed and dip-coating of polyetherimide (PEI) onto the CNT surface, we successfully prepared the carbon-based TFC membrane. Results show that PEI with positive charges can enhance the adhesion between CNT and rGO, as a result, improving the FO performance. The water flux of 25.74 LMH with reverse salt flux of 5.94 gMH are achieved, implying this carbon-based membrane possesses great potential in FO application.
[1] WWAP, U., The United Nations World Water Development Report 2018: Nature-Based Solutions for Water. United Nations Educational, Scientific; Cultural Organization (UNESCO), WWAP … 2018
[2] Igunnu, E.T. and G.Z. Chen, Produced water treatment technologies. International Journal of Low-Carbon Technologies, 2012. 9(3):157-177.
[3] Akther, N., et al., Recent advancements in forward osmosis desalination: a review. Chemical Engineering Journal, 2015. 281:502-522.
[4] Akther, N., et al., Recent advancements in forward osmosis desalination: a review. 2015. 281:502-522.
[5] Mulder, J., Basic principles of membrane technology. Springer Science & Business Media 2012.
[6] Fahim, I.S., W. Mamdouh, and H.G. Salem, Chitosan Nanocomposite Mesoporous Membranes: Mechanical Barrier Properties as a Function of Temperature. Journal of Materials Science Research, 2015. 4(4):1.
[7] Vrentas, J. and J. Duda, Diffusion in polymer—solvent systems. I. Reexamination of the free‐volume theory. Journal of Polymer Science Part B: Polymer Physics, 1977. 15(3):403-416.
[8] Wijmans, J.G. and R.W. Baker, The solution-diffusion model: a review. Journal of Membrane Science, 1995. 107(1-2):1-21.
[9] Strathmann, H., Membrane separation processes: Current relevance and future opportunities. AIChE Journal, 2001. 47(5):1077-1087.
[10] Fane, A., C. Tang, and R. Wang, Membrane technology for water: microfiltration, ultrafiltration, nanofiltration, and reverse osmosis. Treatise on water science, Elsevier Science 2011.
[11] 鄭東文 and 林智偉, 薄膜過濾家族. 科學發展, 2014. 500:36-41.
[12] Li, K., Ceramic membranes for separation and reaction. John Wiley & Sons 2007.
[13] Kim, H.J., et al., A carbonaceous membrane based on a polymer of intrinsic microporosity (PIM-1) for water treatment. Scientific Reports, 2016. 6:36078.
[14] Idarraga-Mora, J.A., et al., Role of Nanocomposite Support Stiffness on TFC Membrane Water Permeance. Membranes, 2018. 8(4):111.
[15] Zeman, L. and T. Fraser, Formation of air-cast cellulose acetate membranes. Part I. Study of macrovoid formation. Journal of Membrane Science, 1993. 84(1-2):93-106.
[16] Liu, X., Y. Peng, and S. Ji, A new method to prepare organic–inorganic hybrid membranes. Desalination, 2008. 221(1-3):376-382.
[17] 簡明紳, 具蕾絲結構與底表面阻鹽層的聚丙烯腈複合膜在正滲透之應用. 材料科學工程學系, 國立清華大學, 臺灣新竹, 2018.
[18] Kesting, R.E., Synthetic polymeric membranes: a structural perspectives. AlChE Journal, 1985.
[19] Karisma, D., G. Febrianto, and D. Mangindaan. Polyetherimide thin film composite (PEI-TFC) membranes for nanofiltration treatment of dyes wastewater. in IOP Conference series: earth and environmental science. 2018. IOP Publishing.
[20] Cohen-Tanugi, D. and J.C. Grossman, Water desalination across nanoporous graphene. Nano Letters, 2012. 12(7):3602-3608.
[21] Lyu, J., et al., Separation and purification using GO and r-GO membranes. RSC Advances, 2018. 8(41):23130-23151.
[22] De Andres, P., R. Ramírez, and J.A. Vergés, Strong covalent bonding between two graphene layers. Physical Review B, 2008. 77(4):045403.
[23] Schatzberg, P., Molecular diameter of water from solubility and diffusion measurements. The Journal of Physical Chemistry A, 1967. 71(13):4569-4570.
[24] Cheng, W., et al., Selective removal of divalent cations by polyelectrolyte multilayer nanofiltration membrane: role of polyelectrolyte charge, ion size, and ionic strength. Journal of Membrane Science, 2018. 559:98-106.
[25] Zhao, S., et al., Recent developments in forward osmosis: opportunities and challenges. Journal of Membrane Science, 2012. 396:1-21.
[26] Klaysom, C., et al., Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply. Chemical Society Reviews, 2013. 42(16):6959-6989.
[27] H.T. Innovations, Histroy of HTI. http://www.htiwater.com/company/hti_history.html. 2010
[28] Cath, T.Y., A.E. Childress, and M. Elimelech, Forward osmosis: principles, applications, and recent developments. Journal of Membrane Science 2006. 281(1-2):70-87.
[29] Linares, R.V., et al., Forward osmosis niches in seawater desalination and wastewater reuse. Water Research, 2014. 66:122-139.
[30] Choi, Y.-J., et al., Toward a combined system of forward osmosis and reverse osmosis for seawater desalination. Desalination, 2009. 247(1-3):239-246.
[31] Lutchmiah, K., et al., Forward osmosis for application in wastewater treatment: a review. Water Research, 2014. 58:179-197.
[32] Zhang, S., et al., Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD). Water Research, 2014. 52:112-121.
[33] Kim, Y.C. and M. Elimelech, Potential of osmotic power generation by pressure retarded osmosis using seawater as feed solution: Analysis and experiments. Journal of Materials Science Research, 2013. 429:330-337.
[34] Lee, K., R. Baker, and H. Lonsdale, Membranes for power generation by pressure-retarded osmosis. Membranes for Energy Conversion, 1981. 8(2):141-171.
[35] Sant’Anna, V., L.D.F. Marczak, and I.C. Tessaro, Membrane concentration of liquid foods by forward osmosis: process and quality view. Journal of Food Engineering, 2012. 111(3):483-489.
[36] Ge, Q. and T.-S. Chung, Oxalic acid complexes: promising draw solutes for forward osmosis (FO) in protein enrichment. Chemical Communications, 2015. 51(23):4854-4857.
[37] Siew, A., Controlling drug release through osmotic systems. International Scholarly Research Network, 2013. 37(7):40-44.
[38] Widjojo, N., et al., The role of sulphonated polymer and macrovoid-free structure in the support layer for thin-film composite (TFC) forward osmosis (FO) membranes. Journal of Membrane Science, 2011. 383(1-2):214-223.
[39] Arena, J.T., et al., Surface modification of thin film composite membrane support layers with polydopamine: Enabling use of reverse osmosis membranes in pressure retarded osmosis. Journal of Membrane Science 2011. 375(1-2):55-62.
[40] Akther, N., S. Daer, and S.W. Hasan, Effect of flow rate, draw solution concentration and temperature on the performance of TFC FO membrane, and the potential use of RO reject brine as a draw solution in FO–RO hybrid systems. Desalination and Water Treatment, 2018. 136:65-71.
[41] Yip, N.Y., et al., High performance thin-film composite forward osmosis membrane. Environmental Science & Technology, 2010. 44(10):3812-3818.
[42] Phillip, W.A., J.S. Yong, and M. Elimelech, Reverse draw solute permeation in forward osmosis: modeling and experiments. Environmental Science & Technology, 2010. 44(13):5170-5176.
[43] Hancock, N.T. and T.Y. Cath, Solute coupled diffusion in osmotically driven membrane processes. Environmental Science & Technology, 2009. 43(17):6769-6775.
[44] Nguyen, A., L. Zou, and C. Priest, Evaluating the antifouling effects of silver nanoparticles regenerated by TiO2 on forward osmosis membrane. Journal of Membrane Science, 2014. 454:264-271.
[45] Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696):666-669.
[46] Zhu, Y., et al., Graphene and graphene oxide: synthesis, properties, and applications. Advanced Materials, 2010. 22(35):3906-3924.
[47] Bolotin, K.I., et al., Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008. 146(9-10):351-355.
[48] Lee, C., et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008. 321(5887):385-388.
[49] Li, X., et al., Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Letters, 2009. 9(12):4359-4363.
[50] Balandin, A.A., et al., Superior thermal conductivity of single-layer graphene. Nano Letters, 2008. 8(3):902-907.
[51] Najafabadi, A.T.J.R. and S.E. Reviews, Emerging applications of graphene and its derivatives in carbon capture and conversion: Current status and future prospects. Renewable and Sustainable Energy Reviews, 2015. 41:1515-1545.
[52] Frank, O. and M. Kalbac, Chemical vapor deposition (CVD) growth of graphene films, Graphene. 2014, Elsevier. p. 27-49.
[53] Wang, C., K. Vinodgopal, and G.-P. Dai, Large-Area Synthesis and Growth Mechanism of Graphene by Chemical Vapor Deposition, Chemical Vapor Deposition for Nanotechnology. 2018, IntechOpen.
[54] Brodie, B.C.J.P.T.o.t.R.S.o.L., XIII. On the atomic weight of graphite. The Royal Society, 1859(149):249-259.
[55] Hummers Jr, W.S. and R.E. Offeman, Preparation of graphitic oxide. Journal of the American Chemical Society, 1958. 80(6):1339-1339.
[56] Renteria, J.D., et al., Strongly anisotropic thermal conductivity of free‐standing reduced graphene oxide films annealed at high temperature. Advanced Functional Materials, 2015. 25(29):4664-4672.
[57] Park, S. and R.S. Ruoff, Chemical methods for the production of graphenes. Nature Nanotechnology, 2009. 4(4):217.
[58] Wang, G., et al., Facile synthesis and characterization of graphene nanosheets. The Journal of Physical Chemistry C, 2008. 112(22):8192-8195.
[59] Liu, H., et al., Glucose-reduced graphene oxide with excellent biocompatibility and photothermal efficiency as well as drug loading. Nanoscale Research Letters, 2016. 11(1):211.
[60] Ding, H., et al., Reduction of graphene oxide at room temperature with vitamin C for RGO–TiO2 photoanodes in dye-sensitized solar cell. Thin Solid Films, 2015. 584:29-36.
[61] Song, X., et al., Nanocomposite membrane with different carbon nanotubes location for nanofiltration and forward osmosis applications. ACS Sustainable Chemistry & Engineering, 2016. 4(6):2990-2997.
[62] Lee, J., et al., Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment. Journal of Membrane Science, 2013. 448:223-230.
[63] 林佶峰, 聚多巴胺/氧化石墨烯改良分子級逐層堆疊法於正滲透複合薄膜之應用. 材料科學工程學系, 國立清華大學, 臺灣新竹, 2018.
[64] Liu, H., H. Wang, and X. Zhang, Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification. Advanced Materials, 2015. 27(2):249-254.
[65] Wang, Y., et al., Preparation of polyethersulfone/carbon nanotube substrate for high-performance forward osmosis membrane. Desalination, 2013. 330:70-78.
[66] 姜如芸, 聚多巴胺/氧化石墨烯複合膜應用於正向滲透之可行性研究. 材料科學工程學系, 國立清華大學, 臺灣新竹, 2017.
[67] 蔡孟庭, 奈米碳管-聚丙烯腈-分子級逐層堆疊聚醯胺選擇層複合膜於正向滲透之應用. 材料科學工程學系, 國立清華大學, 臺灣新竹, 2018.
[68] 李欣樺, 高耐化學性碳複合薄膜於正滲透系統之應用, 材料科學工程學系, 國立清華大學, 臺灣新竹. 2019
[69] 馬少陽, 聚丙烯腈/氧化石墨烯改良基材膜於正滲透複合膜之應用. 材料科學工程學系, 國立清華大學, 臺灣新竹, 2020.
[70] Choi, H.-g., et al., Thin-film composite membranes comprising ultrathin hydrophilic polydopamine interlayer with graphene oxide for forward osmosis. Desalination, 2019. 449:41-49.
[71] 汪建民, 材料分析. 材料科學學會 1998
[72] Young, T.J.T.R.S.L., Contact angle. 1805. 95:65.
[73] Martín, J., E.J. Díaz-Montaña, and A.G. Asuero, Recovery of anthocyanins using membrane technologies: A review. Critical Reviews in Analytical Chemistry, 2018. 48(3):143-175.
[74] Shen, L., S. Xiong, and Y. Wang, Graphene oxide incorporated thin-film composite membranes for forward osmosis applications. Chemical Engineering Science, 2016. 143:194-205.
[75] Tiraferri, A., et al., A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes. Journal of Membrane Science, 2013. 444:523-538.
[76] Chua, C.K. and M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chemical Society Reviews, 2014. 43(1):291-312.
[77] Fan, Z., et al., An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon, 2010. 48(5):1686-1689.
[78] Yang, E., et al., Laminar reduced graphene oxide membrane modified with silver nanoparticle-polydopamine for water/ion separation and biofouling resistance enhancement. Desalination, 2018. 426:21-31.
[79] Li, W., W. Wu, and Z. Li, Controlling interlayer spacing of graphene oxide membranes by external pressure regulation. ACS Nano, 2018. 12(9):9309-9317.
[80] Yang, E., et al., Enhanced desalination performance of forward osmosis membranes based on reduced graphene oxide laminates coated with hydrophilic polydopamine. Carbon, 2017. 117:293-300.
[81] Ma, N., et al., Nanocomposite substrates for controlling internal concentration polarization in forward osmosis membranes. Journal of Membrane Science, 2013. 441:54-62.
[82] Alsvik, I.L. and M.-B. Hägg, Pressure retarded osmosis and forward osmosis membranes: materials and methods. Polymers, 2013. 5(1):303-327.
[83] Zhao, X., J. Li, and C. Liu, A novel TFC-type FO membrane with inserted sublayer of carbon nanotube networks exhibiting the improved separation performance. Desalination, 2017. 413:176-183.
[84] Fan, X., Y. Liu, and X. Quan, A novel reduced graphene oxide/carbon nanotube hollow fiber membrane with high forward osmosis performance. Desalination, 2019. 451:117-124.
[85] Cath, T.Y., et al., Standard methodology for evaluating membrane performance in osmotically driven membrane processes. Desalination, 2013. 312:31-38.