研究生: |
江學士 |
---|---|
論文名稱: |
利用5V驅動電壓旋轉式梳狀致動器之可調變式光衰減器 A 5V MEMS Variable Optical Attenuator using Rotary Comb Drive |
指導教授: | 葉哲良 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 微機電 、光衰減器 、旋轉式梳狀致動器 |
外文關鍵詞: | MEMS, Variable Optical Attenuator, Rotary Comb Drive, VOA |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
可調變式光衰減器是光通訊應用中的重要元件之一,在光纖網路的傳送與接收機等均需要安裝可調變式光衰減器,以用來控制光訊號的強度。本論文的主要目的是以微機電技術實現一顆低電壓驅動、沒有動態超越(overshoot) 、且能抗震動的微機電可調變式光衰減器。
由於旋轉式梳狀致動器在轉動方向的剛性遠比三軸方向要低,因此較能承受震動的衝擊,所以本論文選用旋轉式梳狀致動器作為元件的致動器。然而旋轉式梳狀致動器的驅動電壓較高,要降低致動器的驅動電壓,則需使用折曲式彈簧降低彈簧常數。在光衰減架構則設計四種轉動鏡面:懸臂型、鐘擺型、傾斜式與摺疊轉動鏡面。由於致動器轉動角度在兩度以內,因此轉動鏡面必須在兩度內達到>40dB的光衰減。
致動器的參數尺寸設計完成後進行光罩佈局與製程。元件製程部分採用SOI Micromachining製程,以ICP製作高深寬比的元件,並鍍金使鏡面能反射光訊號,最後進行元件量測。
在本論文中已經完成可調變式光衰減器的設計、製造、與量測驗證,證實所設計的光衰減器能在5V低電壓下驅動,並具備400Hz以上的頻寬。步進響應沒有overshoot,Tilted Micromirror設計可達到最大光衰減量55dB,光學動態響應速率<3ms,,介入損失0.95dB,PDL=0.3dB@Atten.=20dB,WDL(1510~90nm)=0.87dB
@Atten.=20dB。
Variable Optical Attenuator (VOA) applied to control the optical signal intensity is an important device for the transceiver/receiver in optical communication system. In this thesis, a low voltage, no overshoot and anti-impact MEMS VOA would be implemented by MEMS technologies.
Rotary comb drive was chosen as the actuator of VOA to prevent impact because its rigidity in rotation direction was much smallr than that in XYZ directions. However, rotary comb drive had high driving voltage. Serpentine spring with low spring constant could help to reduce the driving voltage. Considering the equivalent of mechanical and electrostatic torques, the device parameters were designed to achieve 20 rotation in 5V. Four optical attenuations (cantilever-type, pendulum, tilted, and folded micromirrors) were also devised to have maximum attenuation >40dB in 20 rotation by using TracePro simulation tool.
Mask layout and fabrication followed the device design. SOI micromachining developed the device main structure. Then Au sputter process made the micromirror reflection. Finally, we measured the deices after fabrication completed.
In this thesis, the design, fabrication, and measurement were accomplished. The MEMS VOA implemented could operate in 5V and have 400Hz bandwidth. Its step response showed no overshoot. The Tilted Micromirror design attenuated to maximum 55dB. The optical dynamic response <3ms, insertion loss=0.95dB, PDL=0.3dB, and WDL (1510~1590nm)=0.87dB.
[1] C. –H. Kim and Y. –K. Kim, “MEMS variable optical attenuator using a translation motion of 45 tilted vertical mirror,” Journal of Micromechanics and Microengineering, vol. 15, pp. 1466-1475, 2005
[2] C. Marxer, B. de Jong, and N. de Rooij, “Comparison of MEMS variable optical attenuator designs,” in 2002 IEEE/LEOS Int. Conf. Optical MEMS, pp. 189–190, 2002
[3] A. Bashir, P. Katila, N. Ogier, B. Saadany, and D. Khalil, “A MEMS-Based VOA With Very Low PDL ,” IEEE Photonics Technology Letters, Vol. 16, No. 4, pp. 1047-1049, Apr. 2004
[4] C. Lee, Y. Lin, Y. Lai, M. Tasi, C. Chen, and C. Wu, “3-V Driven Pop-Up Micromirror for Reflecting Light Toward Out-of-Plane Direction for VOA Applications,” IEEE Photonics Technology Letters, Vol. 16, No. 4, pp. 1044-1046, Apr. 2004
[5] K. Isamoto, K. Kato, A. Morosawa, C. Chong, H. Fujita, and H. Toshiyoshi, “A 5-V Operated MEMS Variable Optical Attenuator by SOI Bulk Micromachining ,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 10, No. 3, pp. 570-578 May/Jun. 2004
[6] C. Lee, and Y. Lin, “A New Micromechanism for Transformation of Small Displacements to Large Rotations for a VOA,” IEEE Sensors Journal, Vol. 4, No. 4, pp. 503-509, Aug. 2004
[7] T. Lim, C. Ji, C. Oh, H. Kwon, Y. Yee, and J. Bu, “Electrostatic MEMS Variable Optical Attenuator With Rotating Folded Micromirror ,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 10, No. 3, pp. 558-562, May/Jun. 2004
[8] C. Marxer, P. Griss, and N. de Rooij, “A Variable Optical Attenuator Based on Silicon Micromechanics ,” IEEE Photonics Technology Letters, Vol. 11, No. 2, pp. 233-235, Feb., 1999
[9] C. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, “A Silicon MEMS Optical Switch Attenuator and Its Use in Lightwave Subsystems ,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 5, No. 1, pp. 18-25, Jan./Feb 1999
[10] C. Ji; Y. Yee; J. Choi; J. Bu;” Electromagnetic variable optical attenuator,” in 2002 IEEE/LEOS Int. Conf. Optical MEMS, pp. 20-23, 2002
[11] http://www.sercalo.com
[12] http://www.diconfiber.com
[13] T. Fukuda and W. Menz, “Micro Mechanical Systems: Principles and Technology,” Published by Elsevier in 1998.
[14] “Micro Electro Mechanical Systems Technology and Application, ” PIDC Publication in 2003.
[15] W. Noell, and et. al, “Applications of SOI-Based Optical MEMS, ” IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, No. 1, pp. 148-154, Jan./Feb. 2002
[16] A. Q. Liu, X. M. Zhang, C. Lu, F. Wang, C. Lu, and Z. S. Liu, “Optical and mechanical models for a variable optical attenuator using a micromirror drawbridge, ” Journal of Micromechanics and Microengineering, vol. 13, pp. 400-411, 2003
[17] L. Y. Lin, and E. L. Goldstein, “Opportunities and Challenges for MEMS in Lightwave Communications, ” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 8, No. 1, pp. 163-172, Jan./Feb. 2002
[18] Spec. of lensed fiber in Corning (website: http://www.corning.com)
[19] B. Saleh, and M. Teich, “Fundamentals of Photonics, ” John Wiley & Sons Publication, p85
[20] C. Chen, C. Lee, and J. A. Yeh, “Retro-Reflection Type MOEMS VOA, ” IEEE Photonics Technology Letters, Vol. 16, No. 10, pp. 2290-2292, Oct. 2004
[21] H. Cai, X. M. Zhang, C. Lu, A. Q. Liu, and E. H. Khoo, “Linear MEMS Variable Optical Attenuator Using Reflective Elliptical Mirror, ” IEEE Photonics Technology Letters, Vol. 17, No. 2, pp. 402-404, Feb. 2005
[22] C. H. Kim, J. Park, N. Park, and Y. K. Kim, “MEMS Fiber-Optic Variable Optical Attenuator using Collimating Lensed Fiber, ” in 2003 IEEE/LEOS Int. Conf. Optical MEMS, pp. 145-146, 2003
[23] G. Wu, A. R. Mirza, S. K. Gamage, L. Ukrainczyk, N. Shashidhar, G. Wruck, and M. Ruda, “Design and use of compact lensed fibers for low cost packaging of optical MEMS components, ” Journal of Micromechanics and Microengineering, vol. 14 No.10 pp. 1367-1375 Jul. 2004
[24] H. N. Kwon, and J. –H. Lee, “A Micromachined 2 X 2 Optical Switch Aligned With Bevel-Ended Fibers for Low Return Loss, ” IEEE Journal of Microelectromechanical Systems, Vol. 13, No. 2, Apr. 2004
[25] R. R. A. Syms, H. Zou, J. Stagg, and D. F. Moore, “Multistate Latching MEMS Variable Optical Attenuator, ” IEEE Photonics Technology Letters, Vol. 16, No. 1, pp. 191-193, Jan. 2004
[26] J. A. Yeh, C. N. Chen, and Y. S. Lui, “Large rotation actuated by in-plane rotary comb-drives with serpentine spring suspension, ” Journal of Micromechanics and Microengineering, vol. 15 No. 1 pp. 201-206 Jan. 2005
[27] J. A. Yeh, C. Y. Hui, and N. C. Tien, “Electrostatic model for an asymmetric comb-drive, ” IEEE Journal of Microelectromechanical System, vol. 9, no. 1, pp. 126–135, Mar. 2000.
[28] J. A. Yeh, S. S. Jiang, W. Y. Lo, and J. Y. Huang, “Translation Pull-in Instability of In-Plane Comb-Drives, ” submitted to Journal of Microsystem Technologies
[29] J. E. Shigley and C. R. Mischke, “Mechanical Engineering Design, ” McGRAW-Hill Publication, Table A-18
[30] W. H. Juan and S. W. Pang, “Controlling sidewall smoothness for micromachined Si mirrors and lenses,” J. Vac. Sci. Technol. B, Vol. 14, No.6, pp. 4080–4084, Nov./Dec. 1996.
[31] S. Franco “Design with Operational Amplifiers and Analog Integrated Circuits, ” 3rd Edition, McGRAW-Hill Publication
[32] D. A. Johns, and K. Martin, “Analog Integrated Circuit Design ,” John Wiley & Sons Publication