簡易檢索 / 詳目顯示

研究生: 江學士
論文名稱: 利用5V驅動電壓旋轉式梳狀致動器之可調變式光衰減器
A 5V MEMS Variable Optical Attenuator using Rotary Comb Drive
指導教授: 葉哲良
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 86
中文關鍵詞: 微機電光衰減器旋轉式梳狀致動器
外文關鍵詞: MEMS, Variable Optical Attenuator, Rotary Comb Drive, VOA
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 可調變式光衰減器是光通訊應用中的重要元件之一,在光纖網路的傳送與接收機等均需要安裝可調變式光衰減器,以用來控制光訊號的強度。本論文的主要目的是以微機電技術實現一顆低電壓驅動、沒有動態超越(overshoot) 、且能抗震動的微機電可調變式光衰減器。
    由於旋轉式梳狀致動器在轉動方向的剛性遠比三軸方向要低,因此較能承受震動的衝擊,所以本論文選用旋轉式梳狀致動器作為元件的致動器。然而旋轉式梳狀致動器的驅動電壓較高,要降低致動器的驅動電壓,則需使用折曲式彈簧降低彈簧常數。在光衰減架構則設計四種轉動鏡面:懸臂型、鐘擺型、傾斜式與摺疊轉動鏡面。由於致動器轉動角度在兩度以內,因此轉動鏡面必須在兩度內達到>40dB的光衰減。
    致動器的參數尺寸設計完成後進行光罩佈局與製程。元件製程部分採用SOI Micromachining製程,以ICP製作高深寬比的元件,並鍍金使鏡面能反射光訊號,最後進行元件量測。
    在本論文中已經完成可調變式光衰減器的設計、製造、與量測驗證,證實所設計的光衰減器能在5V低電壓下驅動,並具備400Hz以上的頻寬。步進響應沒有overshoot,Tilted Micromirror設計可達到最大光衰減量55dB,光學動態響應速率<3ms,,介入損失0.95dB,PDL=0.3dB@Atten.=20dB,WDL(1510~90nm)=0.87dB
    @Atten.=20dB。


    Variable Optical Attenuator (VOA) applied to control the optical signal intensity is an important device for the transceiver/receiver in optical communication system. In this thesis, a low voltage, no overshoot and anti-impact MEMS VOA would be implemented by MEMS technologies.
    Rotary comb drive was chosen as the actuator of VOA to prevent impact because its rigidity in rotation direction was much smallr than that in XYZ directions. However, rotary comb drive had high driving voltage. Serpentine spring with low spring constant could help to reduce the driving voltage. Considering the equivalent of mechanical and electrostatic torques, the device parameters were designed to achieve 20 rotation in 5V. Four optical attenuations (cantilever-type, pendulum, tilted, and folded micromirrors) were also devised to have maximum attenuation >40dB in 20 rotation by using TracePro simulation tool.
    Mask layout and fabrication followed the device design. SOI micromachining developed the device main structure. Then Au sputter process made the micromirror reflection. Finally, we measured the deices after fabrication completed.
    In this thesis, the design, fabrication, and measurement were accomplished. The MEMS VOA implemented could operate in 5V and have 400Hz bandwidth. Its step response showed no overshoot. The Tilted Micromirror design attenuated to maximum 55dB. The optical dynamic response <3ms, insertion loss=0.95dB, PDL=0.3dB, and WDL (1510~1590nm)=0.87dB.

    第一章 前言 1 1.1 研究動機 1 1.2 背景分析 2 1.3 研究目標 7 1.4 全文架構 9 第二章 元件設計 10 2.1 光能量衰減原理 10 2.2 元件設計流程 15 2.3 光衰減架構設計 16 2.3.1轉動鏡面之機制設計比較 16 2.3.2光纖安裝溝槽設計 25 2.4 微機電技術 25 2.4.1旋轉式梳狀致動器設計 26 2.4.2 製程設計 45 2.4.3 元件組裝 51 第三章 元件量測 54 3.1 量測設備架設 54 3.1.1致動器特性量測設備 54 3.1.2元件光學特性量測設備 55 3.2 致動器特性量測結果 57 3.2.1靜態特性 57 3.2.2動態特性 58 3.3 元件光學特性 62 3.3.1介入損失(Insertion Loss) 62 3.3.2靜態光衰減特性曲線 65 3.3.3動態光衰減特性 66 3.3.4 偏極化相關損失(Polarization Dependent Loss, PDL) 67 3.3.5 波長相關損失(Wavelength Dependent Loss, WDL) 67 3.4 結果討論 67 第四章 結論與未來工作 70 4.1 光纖安裝溝槽的改良 71 4.2 製程失誤的檢討與解決 71 4.3鏡面製程的改進 73 4.4元件封裝 75 4.5 光電二極體放大電路的改善 75 4.6 可調變式光衰減器控制電路 77 4.7 彈簧的T型設計目的與影響 78 4.8 元件的轉動剛性與平移剛性的差異 78 4.9 支撐鏡面之懸臂的穩定性 79 4.10 彈簧使否會發生彎曲而影響元件 80 4.11 靠近內部之梳指的作用 80 4.12 元件驅動電壓下降的主要原因以及其他可能的設計考量 81 4.13 震動測試與可靠度測試 82 參考文獻 83

    [1] C. –H. Kim and Y. –K. Kim, “MEMS variable optical attenuator using a translation motion of 45 tilted vertical mirror,” Journal of Micromechanics and Microengineering, vol. 15, pp. 1466-1475, 2005
    [2] C. Marxer, B. de Jong, and N. de Rooij, “Comparison of MEMS variable optical attenuator designs,” in 2002 IEEE/LEOS Int. Conf. Optical MEMS, pp. 189–190, 2002
    [3] A. Bashir, P. Katila, N. Ogier, B. Saadany, and D. Khalil, “A MEMS-Based VOA With Very Low PDL ,” IEEE Photonics Technology Letters, Vol. 16, No. 4, pp. 1047-1049, Apr. 2004
    [4] C. Lee, Y. Lin, Y. Lai, M. Tasi, C. Chen, and C. Wu, “3-V Driven Pop-Up Micromirror for Reflecting Light Toward Out-of-Plane Direction for VOA Applications,” IEEE Photonics Technology Letters, Vol. 16, No. 4, pp. 1044-1046, Apr. 2004
    [5] K. Isamoto, K. Kato, A. Morosawa, C. Chong, H. Fujita, and H. Toshiyoshi, “A 5-V Operated MEMS Variable Optical Attenuator by SOI Bulk Micromachining ,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 10, No. 3, pp. 570-578 May/Jun. 2004
    [6] C. Lee, and Y. Lin, “A New Micromechanism for Transformation of Small Displacements to Large Rotations for a VOA,” IEEE Sensors Journal, Vol. 4, No. 4, pp. 503-509, Aug. 2004
    [7] T. Lim, C. Ji, C. Oh, H. Kwon, Y. Yee, and J. Bu, “Electrostatic MEMS Variable Optical Attenuator With Rotating Folded Micromirror ,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 10, No. 3, pp. 558-562, May/Jun. 2004
    [8] C. Marxer, P. Griss, and N. de Rooij, “A Variable Optical Attenuator Based on Silicon Micromechanics ,” IEEE Photonics Technology Letters, Vol. 11, No. 2, pp. 233-235, Feb., 1999
    [9] C. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, “A Silicon MEMS Optical Switch Attenuator and Its Use in Lightwave Subsystems ,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 5, No. 1, pp. 18-25, Jan./Feb 1999
    [10] C. Ji; Y. Yee; J. Choi; J. Bu;” Electromagnetic variable optical attenuator,” in 2002 IEEE/LEOS Int. Conf. Optical MEMS, pp. 20-23, 2002
    [11] http://www.sercalo.com
    [12] http://www.diconfiber.com
    [13] T. Fukuda and W. Menz, “Micro Mechanical Systems: Principles and Technology,” Published by Elsevier in 1998.
    [14] “Micro Electro Mechanical Systems Technology and Application, ” PIDC Publication in 2003.
    [15] W. Noell, and et. al, “Applications of SOI-Based Optical MEMS, ” IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, No. 1, pp. 148-154, Jan./Feb. 2002
    [16] A. Q. Liu, X. M. Zhang, C. Lu, F. Wang, C. Lu, and Z. S. Liu, “Optical and mechanical models for a variable optical attenuator using a micromirror drawbridge, ” Journal of Micromechanics and Microengineering, vol. 13, pp. 400-411, 2003
    [17] L. Y. Lin, and E. L. Goldstein, “Opportunities and Challenges for MEMS in Lightwave Communications, ” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 8, No. 1, pp. 163-172, Jan./Feb. 2002
    [18] Spec. of lensed fiber in Corning (website: http://www.corning.com)
    [19] B. Saleh, and M. Teich, “Fundamentals of Photonics, ” John Wiley & Sons Publication, p85
    [20] C. Chen, C. Lee, and J. A. Yeh, “Retro-Reflection Type MOEMS VOA, ” IEEE Photonics Technology Letters, Vol. 16, No. 10, pp. 2290-2292, Oct. 2004
    [21] H. Cai, X. M. Zhang, C. Lu, A. Q. Liu, and E. H. Khoo, “Linear MEMS Variable Optical Attenuator Using Reflective Elliptical Mirror, ” IEEE Photonics Technology Letters, Vol. 17, No. 2, pp. 402-404, Feb. 2005
    [22] C. H. Kim, J. Park, N. Park, and Y. K. Kim, “MEMS Fiber-Optic Variable Optical Attenuator using Collimating Lensed Fiber, ” in 2003 IEEE/LEOS Int. Conf. Optical MEMS, pp. 145-146, 2003
    [23] G. Wu, A. R. Mirza, S. K. Gamage, L. Ukrainczyk, N. Shashidhar, G. Wruck, and M. Ruda, “Design and use of compact lensed fibers for low cost packaging of optical MEMS components, ” Journal of Micromechanics and Microengineering, vol. 14 No.10 pp. 1367-1375 Jul. 2004
    [24] H. N. Kwon, and J. –H. Lee, “A Micromachined 2 X 2 Optical Switch Aligned With Bevel-Ended Fibers for Low Return Loss, ” IEEE Journal of Microelectromechanical Systems, Vol. 13, No. 2, Apr. 2004
    [25] R. R. A. Syms, H. Zou, J. Stagg, and D. F. Moore, “Multistate Latching MEMS Variable Optical Attenuator, ” IEEE Photonics Technology Letters, Vol. 16, No. 1, pp. 191-193, Jan. 2004
    [26] J. A. Yeh, C. N. Chen, and Y. S. Lui, “Large rotation actuated by in-plane rotary comb-drives with serpentine spring suspension, ” Journal of Micromechanics and Microengineering, vol. 15 No. 1 pp. 201-206 Jan. 2005
    [27] J. A. Yeh, C. Y. Hui, and N. C. Tien, “Electrostatic model for an asymmetric comb-drive, ” IEEE Journal of Microelectromechanical System, vol. 9, no. 1, pp. 126–135, Mar. 2000.
    [28] J. A. Yeh, S. S. Jiang, W. Y. Lo, and J. Y. Huang, “Translation Pull-in Instability of In-Plane Comb-Drives, ” submitted to Journal of Microsystem Technologies
    [29] J. E. Shigley and C. R. Mischke, “Mechanical Engineering Design, ” McGRAW-Hill Publication, Table A-18
    [30] W. H. Juan and S. W. Pang, “Controlling sidewall smoothness for micromachined Si mirrors and lenses,” J. Vac. Sci. Technol. B, Vol. 14, No.6, pp. 4080–4084, Nov./Dec. 1996.
    [31] S. Franco “Design with Operational Amplifiers and Analog Integrated Circuits, ” 3rd Edition, McGRAW-Hill Publication
    [32] D. A. Johns, and K. Martin, “Analog Integrated Circuit Design ,” John Wiley & Sons Publication

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE