簡易檢索 / 詳目顯示

研究生: 陳瑞鴻
Chen, Jui-Hung
論文名稱: 迴路化組合電路的研究
Making Combinational Circuits Cyclifiable
指導教授: 王俊堯
Wang, Chun-Yao
口試委員: 江介宏
Jiang, Jie-Hong
黃俊達
Huang, Juinn-Dar
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 44
中文關鍵詞: 迴路化組合電路邏輯合成與最佳化
外文關鍵詞: Cyclic combinational circuits, Logic synthesis and optimization
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 之前的作品展現出我們有很大的機會,可以透過在電路合成過程中加入組合反饋迴路 (Combinational Feedback Loops) 來實現更加最小化的組合電路。
    然而,他們實現這項技術的方式是藉由分支界定 (branch-and-bound) 的方法探索電路中可能存在的循環依賴關係,但是這樣的方法可能不足以應付複雜的電路設計。
    有別於這樣的探索方式,本文提出了一個正規的邏輯推論的演算法,藉由合併電路節點的方法來直接識別,或者更積極的創造出迴路化的電路架構。
    此外,為了驗證所形成迴路是否為組合電路,我們也提出了一個以可滿足性問題為基底 (SAT-based) 的演算法來有效率地做驗證。
    我們藉由在IWLS 2005 的測試電路上所進行的實驗結果,來呈現我們所提出的識別演算法的有效性和可擴展性。
    與目前最新的演算法比較起來,我們的驗證演算法平均加速了354.94倍。


    Prior works showed great opportunities to achieve more minimized combinational circuits by introducing combinational feedback loops during the synthesis process.
    However, they achieved this by exploring possible cyclic dependencies of circuits in a branch-and-bound manner, which may not scale well for complex designs.
    Instead of exploration, this paper proposes a formal algorithm using logic implication to directly identify, or more aggressively create cyclifiable structure candidates in circuits by merging nodes.
    Additionally, to validate whether the formed loops are combinational, we also propose an efficient SAT-based algorithm.
    The effectiveness and scalability of the identification and validation algorithms are demonstrated in the experimental results performed on a set of IWLS 2005 benchmarks.
    As compared to the state-of-the-art, the validation algorithm has an average speedup of 354.94 times.

    中文摘要 i Abstract ii Acknowledgement iii Contents iv List of Tables vi List of Figures vii 1 Introduction 1 2 Preliminaries 5 2.1 An Example 5 2.2 Background 6 2.3 Node Merging 7 3 Cycli able Structure Identi cation 10 3.1 Candidate Cyclic Substitute Node Identi cation 10 3.2 Candidate Added Cyclic Substitute Node Creation 14 3.2.1 Masking ACSNs 15 3.2.2 Induced ACSNs 16 4 Cycli able Structure Validation 21 4.1 Intra-SCC Validation 22 4.2 Inter-SCC Validation 24 5 Proposed Algorithm 29 6 Experimental Results 32 7 Conclusion 40 Bibliography 41

    [1] M. Abadir, J. Ferguson, and T. Kirkland, “Logic design verification
    via test generation,” IEEE Trans. Computer-Aided Design of Integrated
    Circuits and Systems, vol. 7, no. 1, pp. 138–148, 1988.
    [2] J. Backes, B. Fett, and M. D. Riedel, “The analysis of cyclic circuits
    with Boolean satisfiability,” in Proc. International Conference on
    Computer-Aided Design, 2008, pp. 143–148.
    [3] J. Backes and M. D. Riedel, “The synthesis of cyclic dependencies
    with Craig interpolation,” in Proc. International Workshop on Logic
    and Synthesis, 2009.
    [4] J. Backes and M. D. Riedel, “Reduction of interpolants for logic synthesis,”
    in Proc. International Conference on Computer-Aided Design,
    2010, pp. 602–609.
    [5] J. Backes and M. D. Riedel, “The synthesis of cyclic dependencies with
    Boolean satisfiability,” ACM Trans. Des. Autom. Electron. Syst., vol. 17,
    pp. 44:1–44:24, 2012.
    [6] Berkeley Logic Synthesis and Verificaiton Group. ABC: A System
    for Sequential Synthesis and Verification. [Online]. Available:
    http://www.eecs.berkeley.edu/~alanmi/abc
    [7] Y.-C. Chen and C.-Y. Wang, “Fast detection of node mergers using
    logic implications,” in Proc. International Conference on Computer-
    Aided Design, 2009, pp. 785–788.
    [8] Y.-C. Chen and C.-Y. Wang, “Fast node merging with don’t cares using
    logic implications,” IEEE Trans. Computer-Aided Design of Integrated
    Circuits and Systems, vol. 29, no. 11, pp. 1827–1832, 2010.
    [9] E. Craig, “Mathematical techniques in electronics and engineering
    analysis,” in Proc. of the IEEE, vol. 52, no. 11, pp. 1390–1390, 1964.
    [10] S. Edwards, “Making cyclic circuits acyclic,” in Proc. Design Automation
    Conference, 2003, pp. 159–162.
    [11] L. Hellerman, “A catalog of three-variable or-invert and and-invert
    logical circuits,” IEEE Trans. Electronic Computers, vol. EC-12, no. 3,
    pp. 198–223, 1963.
    [12] Y.-C. Hsu, S. Sun, and D.-C. Du, “Finding the longest simple path
    in cyclic combinational circuits,” in Proc. International Conference on
    Computer Design, 1998, pp. 530–535.
    [13] IWLS 2005 Benchmarks. [Online]. Available: http://iwls.org/iwls2005/
    benchmarks.html
    [14] J.-H. Jiang, A. Mishchenko, and R. Brayton, “On breakable cyclic
    definitions,” in Proc. International Conference on Computer Aided
    Design, 2004, pp. 411–418.
    [15] W. H. Kautz, “The necessity of closed circuit loops in minimal
    combinational circuits,” IEEE Trans. Computers, vol. C-19, no. 2, pp.
    162–164, 1970.
    [16] T. Kirkland and M. Mercer, “A topological search algorithm for ATPG,”
    in Proc. Design Automation Conference, 1987, pp. 502–508.
    [17] W. Kunz and D. Pradhan, “Recursive learning: a new implication
    technique for efficient solutions to CAD problems-test, verification,
    and optimization,” IEEE Trans. Computer-Aided Design of Integrated
    Circuits and Systems, vol. 13, no. 9, pp. 1143–1158, 1994.
    [18] S. Malik, “Analysis of cyclic combinational circuits,” IEEE Trans.
    Computer-Aided Design of Integrated Circuits and Systems, vol. 13,
    no. 7, pp. 950–956, 1994.
    [19] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG
    rewriting: a fresh look at combinational logic synthesis,” in Proc. Design
    Automation Conference, 2006, pp. 532–535.
    [20] O. Neiroukh, S. Edwards, and X. Song, “Transforming cyclic circuits
    into acyclic equivalents,” IEEE Trans. Computer-Aided Design of Integrated
    Circuits and Systems, vol. 27, no. 10, pp. 1775–1787, 2008.
    [21] A. Raghunathan, P. Ashar, and S. Malik, “Test generation for cyclic
    combinational circuits,” in Proc. International Conference on VLSI
    Design, 1995, pp. 104–109.
    [22] M. D. Riedel and J. Bruck, “The synthesis of cyclic combinational
    circuits,” in Proc. Design Automation Conference, 2003, pp. 163–168.
    [23] M. D. Riedel and J. Bruck, “Cyclic combinational circuits: Analysis
    for synthesis,” in Proc. International Workshop on Logic and Synthesis,
    2003, pp. 105–112.
    [24] M. D. Riedel and J. Bruck, “Timing analysis of cyclic combinational
    circuits,” in Proc. International Workshop on Logic and Synthesis, 2004,
    pp. 69–77.
    [25] R. L. Rivest, “The necessity of feedback in minimal monotone combinational
    circuits,” IEEE Trans. Computers, vol. C-26, no. 6, pp. 606–607,
    1977.
    [26] M. Schulz and E. Auth, “Advanced automatic test pattern generation
    and redundancy identification techniques,” in Proc. International Fault-
    Tolerant Computing Symposium, 1988, pp. 30–35.
    [27] T. Shiple, G. Berry, and H. Touati, “Constructive analysis of cyclic
    circuits,” in Proc. European Design and Test Conference, 1996, pp.
    328–333.
    [28] L. Stok, “False loops through resource sharing,” in Proc. International
    Conference on Computer-Aided Design, 1992, pp. 345–348.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE