簡易檢索 / 詳目顯示

研究生: 朱淑芬
Shu-Fen Chu
論文名稱: 探討核酸切除修復機制正常型與缺失型細胞株不同程度的紫外線敏感性之分子機制
Molecular mechanism of differential UV sensitivity in nucleotide excision repair -proficient and -deficient cell lines
指導教授: 劉銀樟
Yin-Chang Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 41
中文關鍵詞: 核酸切除修復髮硫發育障礙色素性乾皮症
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 哺乳動物細胞有一套核酸切除修復機制(nucleotide excision repair;NER)負責修復由短波長紫外線照射或特定化學物所產生的DNA傷害。Xeroderma pigmentosum group D (XPD)蛋白,是一種5’ 往3’ 方向的DNA 解旋脢,與XPB等其他蛋白同為為轉錄因子TFIIH附合體中的其中一員,同時參與核酸切除修復與轉錄機制( transcription)。若XPD發生突變會導致兩種不同臨床症狀的罕見隱性遺傳性疾病,一為色素性乾皮症(xeroderma pigmentosum; XP);另一種為髮硫發育障礙(trichothiodystrophy; TTD) 。這兩種病患對於光照非常敏感,此外XP 病人具有相當高的癌症罹患率。在這個研究中,我嘗試比較正常的人類纖維母細胞(MSU-1)與來自TTD 及XP病人分離出來的纖維母細胞(TTD10VI, R658H;XP22VI, R683W)研究其對於DNA傷害的反應。我發現XP22VI對紫外線最為敏感其次是TTD10VI;並嘗試找出這種不同程度的敏感度與修復能力、細胞凋亡及p53和XPB蛋白表現量的相關性。但是根據我的實驗數據顯示,紫外線敏感度和上述因子並沒有呈現絕對相關性。另外我發現這三株細胞對於過氧化氫的敏感度恰與紫外線相反。由於TTD10VI與XP22VI突變的位置不相同,因而推論轉錄功能影響程度不同而導致不同的紫外線敏感度。但是更確切的分子機制仍須仰賴後續進一步的研究。


    Mammalian cellular genomic DNA damages caused by UV irradiation of short-wavelength or by many chemicals rely on the mechanism of nucleotide excision repair (NER) to recover from the lesions. The xeroderma pigmentosum group D (XPD) is one of the NER components. XPD functions as a helicase in association with another helicase XPB and others in TFIIH complex, which is also involved in gene transcription. Defects in XPD can be associated with two different rare hereditary disorders: xeroderma pigmentosum (XP) and trichothiodystrophy (TTD). Both XP and TTD patients are, in general, hypersensitive to exposure of sun light, only XP patients have high risk of cancer. In this study, the UV sensitivity among the NER proficient (MSU-1) and deficient cell lines (TTD10VI and XP22VI) were re-examined. The UV sensitivity of the three cell lines varied significantly and was in the order of XP22VI, TTD10VI and MSU-1. I tried to correlate the differential UV sensitivities of the cells to parameters of each individual cell lines including the excision rate of UV-induced DNA adducts, UV-induced apoptosis, the p53 and XPB protein levels. The correlation was only partial; none of the parameters was correlated successfully with the UV sensitivity. Interestingly, the sensitivity to hydrogen peroxide of these cell lines was in reverse order of that of UV sensitivity. Since TTD10VI and XP22VI are XPD homozygous with XPD defect at different positions, which may have different effect on transcription, it is suspected that the transcription may be involved in the differential UV sensitivity in XP and TTD cells.

    Introduction………………………………………………………………………1 Nucleotide excision repair NER related genetic disorder XPD protein XPD gene mutations The purpose of this study Materials and methods……………………………………………………………5 Cell cultures Chemicals Western blot analysis Ultraviolet C irradiation Ionizing radiation Viability assay Flow cytometric analysis of apoptosis DNA extraction Enzyme-linked immunosorbent assay (ELISA) Unscheduled DNA synthesis (UDS) Micronucleus assay Results……………………………………………………………………………11 Differential UV sensitivity UV-induced apoptosis in TTD and XP cells TTD and XP cells have lower excision rates of CPD and 6-4 PP Lower UDS in TTD and XP cells UV-induced p53 accumulation in MSU-1, TTD and XP cells Reduced level of XPB protein in TTD and XP cells TTD and XP cells are less sensitive to ionizing radiation and hydrogen peroxide treatment TTD and XP cells are more susceptible to UV or x-ray induced genomic instability Discussion………………………………………………………………………….16 NER activity in XPD-deficient cells UV sensitivity in XPD-deficient cells XP protein content Effect of mutant XPD in transcription p53-mediated apoptosis in XPD-deficient cells Catalase assay Response to oxidative damages Increased genomic instability in NER-deficient cells Reference…………………………………………………………………………23 Figures and legends………………………………………………………………28 Appendix…………………………………………………………………………36 Mutations in the XPD protein Morphology of human fibroblasts Conversion of ELISA data from OD value into the percentage of total DNA lesions remained. Unscheduled DNA synthesis assay

    Akoulitchev, S., Makela, T.P., Weinberg, R.A. and Reinberg, D. (1995) Requirement for TFIIH kinase activity in transcription by RNA polymerase II. Nature, 377, 557-560.
    Araujo, S.J., Tirode, F., Coin, F., Pospiech, H., Syvaoja, J.E., Stucki, M., Hubscher, U., Egly, J.M. and Wood, R.D. (2000) Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK. Genes Dev, 14, 349-359.
    Bergmann, E. and Egly, J.M. (2001) Trichothiodystrophy, a transcription syndrome. Trends Genet, 17, 279-286.
    Bootsma, D. (1993) The genetic defect in DNA repair deficiency syndromes. EACR--Muhlbock Memorial Lecture, 1993. Eur J Cancer, 29A, 1482-1488.
    Botta, E., Nardo, T., Lehmann, A.R., Egly, J.M., Pedrini, A.M. and Stefanini, M. (2002) Reduced level of the repair/transcription factor TFIIH in trichothiodystrophy. Hum Mol Genet, 11, 2919-2928.
    Broughton, B.C., Steingrimsdottir, H., Weber, C.A. and Lehmann, A.R. (1994) Mutations in the xeroderma pigmentosum group D DNA repair/transcription gene in patients with trichothiodystrophy. Nat Genet, 7, 189-194.
    Broughton, B.C., Thompson, A.F., Harcourt, S.A., Vermeulen, W., Hoeijmakers, J.H., Botta, E., Stefanini, M., King, M.D., Weber, C.A., Cole, J. and et al. (1995) Molecular and cellular analysis of the DNA repair defect in a patient in xeroderma pigmentosum complementation group D who has the clinical features of xeroderma pigmentosum and Cockayne syndrome. Am J Hum Genet, 56, 167-174.
    Cadet, J., Sage, E. and Douki, T. (2005) Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res, 571, 3-17.
    Chan, G.L. and Little, J.B. (1981) Cross-sensitivity of certain xeroderma pigmentosum and Cockayne syndrome fibroblast strains to both ionizing radiation and ultraviolet light. Mol Gen Genet, 181, 562-563.
    Coin, F., Bergmann, E., Tremeau-Bravard, A. and Egly, J.M. (1999) Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH. Embo J, 18, 1357-1366.
    Conaway, J.W., Shilatifard, A., Dvir, A. and Conaway, R.C. (2000) Control of elongation by RNA polymerase II. Trends Biochem Sci, 25, 375-380.
    de Boer, J., de Wit, J., van Steeg, H., Berg, R.J., Morreau, H., Visser, P., Lehmann, A.R., Duran, M., Hoeijmakers, J.H. and Weeda, G. (1998) A mouse model for the basal transcription/DNA repair syndrome trichothiodystrophy. Mol Cell, 1, 981-990.
    de Boer, J. and Hoeijmakers, J.H. (2000) Nucleotide excision repair and human syndromes. Carcinogenesis, 21, 453-460.
    de Laat, W.L., Jaspers, N.G. and Hoeijmakers, J.H. (1999) Molecular mechanism of nucleotide excision repair. Genes Dev, 13, 768-785.
    Drapkin, R. and Reinberg, D. (1994) The multifunctional TFIIH complex and transcriptional control. Trends Biochem Sci, 19, 504-508.
    Dubaele, S., Proietti De Santis, L., Bienstock, R.J., Keriel, A., Stefanini, M., Van Houten, B. and Egly, J.M. (2003) Basal transcription defect discriminates between xeroderma pigmentosum and trichothiodystrophy in XPD patients. Mol Cell, 11, 1635-1646.
    Dumaz, N., Drougard, C., Quilliet, X., Mezzina, M., Sarasin, A. and Daya-Grosjean, L. (1998) Recovery of the normal p53 response after UV treatment in DNA repair-deficient fibroblasts by retroviral-mediated correction with the XPD gene. Carcinogenesis, 19, 1701-1704.
    Egly, J.M. (2001) The 14th Datta Lecture. TFIIH: from transcription to clinic. FEBS Lett, 498, 124-128.
    Evans, E., Moggs, J.G., Hwang, J.R., Egly, J.M. and Wood, R.D. (1997) Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. Embo J, 16, 6559-6573.
    Eveno, E., Bourre, F., Quilliet, X., Chevallier-Lagente, O., Roza, L., Eker, A.P., Kleijer, W.J., Nikaido, O., Stefanini, M., Hoeijmakers, J.H. and et al. (1995) Different removal of ultraviolet photoproducts in genetically related xeroderma pigmentosum and trichothiodystrophy diseases. Cancer Res, 55, 4325-4332.
    Fenech, M. (2000) The in vitro micronucleus technique. Mutat Res, 455, 81-95.
    Flejter, W.L., McDaniel, L.D., Johns, D., Friedberg, E.C. and Schultz, R.A. (1992) Correction of xeroderma pigmentosum complementation group D mutant cell phenotypes by chromosome and gene transfer: involvement of the human ERCC2 DNA repair gene. Proc Natl Acad Sci U S A, 89, 261-265.
    Frederick, G.D., Amirkhan, R.H., Schultz, R.A. and Friedberg, E.C. (1994) Structural and mutational analysis of the xeroderma pigmentosum group D (XPD) gene. Hum Mol Genet, 3, 1783-1788.
    Geske, F.J., Nelson, A.C., Lieberman, R., Strange, R., Sun, T. and Gerschenson, L.E. (2000) DNA repair is activated in early stages of p53-induced apoptosis. Cell Death Differ, 7, 393-401.
    Hoeijmakers, J.H., Egly, J.M. and Vermeulen, W. (1996) TFIIH: a key component in multiple DNA transactions. Curr Opin Genet Dev, 6, 26-33.
    Hoffschir, F., Daya-Grosjean, L., Petit, P.X., Nocentini, S., Dutrillaux, B., Sarasin, A. and Vuillaume, M. (1998) Low catalase activity in xeroderma pigmentosum fibroblasts and SV40-transformed human cell lines is directly related to decreased intracellular levels of the cofactor, NADPH. Free Radic Biol Med, 24, 809-816.
    Keriel, A., Stary, A., Sarasin, A., Rochette-Egly, C. and Egly, J.M. (2002) XPD mutations prevent TFIIH-dependent transactivation by nuclear receptors and phosphorylation of RARalpha. Cell, 109, 125-135.
    Kobayashi, T., Kuraoka, I., Saijo, M., Nakatsu, Y., Tanaka, A., Someda, Y., Fukuro, S. and Tanaka, K. (1997) Mutations in the XPD gene leading to xeroderma pigmentosum symptoms. Hum Mutat, 9, 322-331.
    Leadon, S.A. and Cooper, P.K. (1993) Preferential repair of ionizing radiation-induced damage in the transcribed strand of an active human gene is defective in Cockayne syndrome. Proc Natl Acad Sci U S A, 90, 10499-10503.
    Lehmann, A.R. (2001) The xeroderma pigmentosum group D (XPD) gene: one gene, two functions, three diseases. Genes Dev, 15, 15-23.
    Lehmann, A.R. (2003) DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochimie, 85, 1101-1111.
    Li, G. and Ho, V.C. (1998) p53-dependent DNA repair and apoptosis respond differently to high- and low-dose ultraviolet radiation. Br J Dermatol, 139, 3-10.
    Li, G., Ho, V.C., Mitchell, D.L., Trotter, M.J. and Tron, V.A. (1997) Differentiation-dependent p53 regulation of nucleotide excision repair in keratinocytes. Am J Pathol, 150, 1457-1464.
    Little, J.B. (2003) Genomic instability and radiation. J Radiol Prot, 23, 173-181.
    Marionnet, C., Benoit, A., Benhamou, S., Sarasin, A. and Stary, A. (1995) Characteristics of UV-induced mutation spectra in human XP-D/ERCC2 gene-mutated xeroderma pigmentosum and trichothiodystrophy cells. J Mol Biol, 252, 550-562.
    McKay, B.C. and Ljungman, M. (1999) Role for p53 in the recovery of transcription and protection against apoptosis induced by ultraviolet light. Neoplasia, 1, 276-284.
    Mori, T., Nakane, M., Hattori, T., Matsunaga, T., Ihara, M. and Nikaido, O. (1991) Simultaneous establishment of monoclonal antibodies specific for either cyclobutane pyrimidine dimer or (6-4)photoproduct from the same mouse immunized with ultraviolet-irradiated DNA. Photochem Photobiol, 54, 225-232.
    Nakajima, S., Lan, L., Kanno, S., Takao, M., Yamamoto, K., Eker, A.P. and Yasui, A. (2004) UV light-induced DNA damage and tolerance for the survival of nucleotide excision repair-deficient human cells. J Biol Chem, 279, 46674-46677.
    Nishiwaki, Y., Kobayashi, N., Imoto, K., Iwamoto, T.A., Yamamoto, A., Katsumi, S., Shirai, T., Sugiura, S., Nakamura, Y., Sarasin, A., Miyagawa, S. and Mori, T. (2004) Trichothiodystrophy fibroblasts are deficient in the repair of ultraviolet-induced cyclobutane pyrimidine dimers and (6-4)photoproducts. J Invest Dermatol, 122, 526-532.
    Ochel, H.J. and Gademann, G. (2005) Characterization of the combined cellular survival effects of benzoquinone-ansamycins and ionizing radiation. J Cancer Res Clin Oncol, 131, 323-328.
    Parshad, R., Sanford, K.K., Kraemer, K.H., Jones, G.M. and Tarone, R.E. (1990) Carrier detection in xeroderma pigmentosum. J Clin Invest, 85, 135-138.
    Parshad, R., Tarone, R.E., Price, F.M. and Sanford, K.K. (1993) Cytogenetic evidence for differences in DNA incision activity in xeroderma pigmentosum group A, C and D cells after X-irradiation during G2 phase. Mutat Res, 294, 149-155.
    Pfeifer, G.P., You, Y.H. and Besaratinia, A. (2005) Mutations induced by ultraviolet light. Mutat Res, 571, 19-31.
    Queille, S., Drougard, C., Sarasin, A. and Daya-Grosjean, L. (2001) Effects of XPD mutations on ultraviolet-induced apoptosis in relation to skin cancer-proneness in repair-deficient syndromes. J Invest Dermatol, 117, 1162-1170.
    Reardon, J.T., Bessho, T., Kung, H.C., Bolton, P.H. and Sancar, A. (1997) In vitro repair of oxidative DNA damage by human nucleotide excision repair system: possible explanation for neurodegeneration in xeroderma pigmentosum patients. Proc Natl Acad Sci U S A, 94, 9463-9468.
    Reardon, J.T., Ge, H., Gibbs, E., Sancar, A., Hurwitz, J. and Pan, Z.Q. (1996) Isolation and characterization of two human transcription factor IIH (TFIIH)-related complexes: ERCC2/CAK and TFIIH. Proc Natl Acad Sci U S A, 93, 6482-6487.
    Rossignol, M., Kolb-Cheynel, I. and Egly, J.M. (1997) Substrate specificity of the cdk-activating kinase (CAK) is altered upon association with TFIIH. Embo J, 16, 1628-1637.
    Sancar, A., Lindsey-Boltz, L.A., Unsal-Kacmaz, K. and Linn, S. (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem, 73, 39-85.
    Sanford, K.K., Parshad, R., Price, F.M., Tarone, R.E. and Lehmann, A.R. (1995) G2 phase repair of X-ray-induced chromosomal DNA damage in trichothiodystrophy cells. Mutat Res, 346, 107-114.
    Satoh, M.S., Jones, C.J., Wood, R.D. and Lindahl, T. (1993) DNA excision-repair defect of xeroderma pigmentosum prevents removal of a class of oxygen free radical-induced base lesions. Proc Natl Acad Sci U S A, 90, 6335-6339.
    Svejstrup, J.Q., Vichi, P. and Egly, J.M. (1996) The multiple roles of transcription/repair factor TFIIH. Trends Biochem Sci, 21, 346-350.
    Takayama, K., Salazar, E.P., Broughton, B.C., Lehmann, A.R., Sarasin, A., Thompson, L.H. and Weber, C.A. (1996) Defects in the DNA repair and transcription gene ERCC2(XPD) in trichothiodystrophy. Am J Hum Genet, 58, 263-270.
    Takayama, K., Salazar, E.P., Lehmann, A., Stefanini, M., Thompson, L.H. and Weber, C.A. (1995) Defects in the DNA repair and transcription gene ERCC2 in the cancer-prone disorder xeroderma pigmentosum group D. Cancer Res, 55, 5656-5663.
    Taylor, E.M., Broughton, B.C., Botta, E., Stefanini, M., Sarasin, A., Jaspers, N.G., Fawcett, H., Harcourt, S.A., Arlett, C.F. and Lehmann, A.R. (1997) Xeroderma pigmentosum and trichothiodystrophy are associated with different mutations in the XPD (ERCC2) repair/transcription gene. Proc Natl Acad Sci U S A, 94, 8658-8663.
    Thorel, F., Constantinou, A., Dunand-Sauthier, I., Nouspikel, T., Lalle, P., Raams, A., Jaspers, N.G., Vermeulen, W., Shivji, M.K., Wood, R.D. and Clarkson, S.G. (2004) Definition of a short region of XPG necessary for TFIIH interaction and stable recruitment to sites of UV damage. Mol Cell Biol, 24, 10670-10680.
    Tron, V.A., Trotter, M.J., Tang, L., Krajewska, M., Reed, J.C., Ho, V.C. and Li, G. (1998) p53-regulated apoptosis is differentiation dependent in ultraviolet B-irradiated mouse keratinocytes. Am J Pathol, 153, 579-585.
    Vermeulen, W., Scott, R.J., Rodgers, S., Muller, H.J., Cole, J., Arlett, C.F., Kleijer, W.J., Bootsma, D., Hoeijmakers, J.H. and Weeda, G. (1994) Clinical heterogeneity within xeroderma pigmentosum associated with mutations in the DNA repair and transcription gene ERCC3. Am J Hum Genet, 54, 191-200.
    Viprakasit, V., Gibbons, R.J., Broughton, B.C., Tolmie, J.L., Brown, D., Lunt, P., Winter, R.M., Marinoni, S., Stefanini, M., Brueton, L., Lehmann, A.R. and Higgs, D.R. (2001) Mutations in the general transcription factor TFIIH result in beta-thalassaemia in individuals with trichothiodystrophy. Hum Mol Genet, 10, 2797-2802.
    Wang, X.W., Vermeulen, W., Coursen, J.D., Gibson, M., Lupold, S.E., Forrester, K., Xu, G., Elmore, L., Yeh, H., Hoeijmakers, J.H. and Harris, C.C. (1996) The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway. Genes Dev, 10, 1219-1232.
    Wang, X.W., Yeh, H., Schaeffer, L., Roy, R., Moncollin, V., Egly, J.M., Wang, Z., Freidberg, E.C., Evans, M.K., Taffe, B.G. and et al. (1995) p53 modulation of TFIIH-associated nucleotide excision repair activity. Nat Genet, 10, 188-195.
    Weber, C.A., Salazar, E.P., Stewart, S.A. and Thompson, L.H. (1988) Molecular cloning and biological characterization of a human gene, ERCC2, that corrects the nucleotide excision repair defect in CHO UV5 cells. Mol Cell Biol, 8, 1137-1146.
    Winkler, G.S., Araujo, S.J., Fiedler, U., Vermeulen, W., Coin, F., Egly, J.M., Hoeijmakers, J.H., Wood, R.D., Timmers, H.T. and Weeda, G. (2000) TFIIH with inactive XPD helicase functions in transcription initiation but is defective in DNA repair. J Biol Chem, 275, 4258-4266.
    Zhou, B.B. and Elledge, S.J. (2000) The DNA damage response: putting checkpoints in perspective. Nature, 408, 433-439.
    Ziegler, A., Jonason, A.S., Leffell, D.J., Simon, J.A., Sharma, H.W., Kimmelman, J., Remington, L., Jacks, T. and Brash, D.E. (1994) Sunburn and p53 in the onset of skin cancer. Nature, 372, 773-776.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE