研究生: |
陳唐立 Chen, Tang-Li |
---|---|
論文名稱: |
利用摻鐿光纖雷射與放大器產生高能量似噪音脈衝及其應用之研究 Generation of high energy noise-like pulse from a Yb-doped fiber laser system and its applications |
指導教授: |
潘犀靈
Pan, Ci-Ling 吳小華 Wu, Hsiao-Hua |
口試委員: |
施宙聰
Shy, Jow-Tsong 林家弘 Lin, Ja-Hon |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 88 |
中文關鍵詞: | 似噪音脈衝 、光纖雷射 、高能量 |
外文關鍵詞: | noise-like pulses, fiber laser, high energy |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在摻鐿光纖雷射中所產生的似噪音脈衝包含了寬大且平滑的輸出光譜以及皮秒和飛秒的雙尺度脈衝寬度等輸出特性,這些獨特的特性使其受到許多研究團隊的注意,當使用光纖雷射放大器提昇其輸出功率時,此雷射可以被應用在雷射加工中。在本論文中我們架設了一摻鐿映射色散光纖雷射並透過非線性極化演化的機制來產生似噪音脈衝,此雷射系統能夠產生出重複率為13.2MHz的似噪音脈衝輸出,輸出功率可達0.55瓦以及雙尺度的脈衝寬度分別是9皮秒以及140飛秒,並透過兩級光纖放大器,雷射輸出功率可以提昇至46.8瓦,對應之單脈衝能量為3.54微焦耳,此雷射可被應用在不同材料的加工特性研究中,初步的研究結果顯示當雷射輸出功率為13瓦時,可以在不鏽鋼以及鋁合金的表面上產生消蝕效果。
Noise-like pulses generated in Yb-doped fiber laser have attract more and more attention due to their unique features of broad and smooth optical spectrum and double-scale fs/ps pulse duration. It will be suitable for laser machining application when the energy is further boosted up by fiber amplifier. In this thesis, a dispersion-mapped Yb-doped fiber laser is built up to generated the noise-like pulse by using nonlinear polarization evolution mechanism. This laser can generate the noise-like pulse with output power up to 0.55W and double scale pulse durations of 9ps and 140fs at a repetition rate of 13.2MHz. By using two stage fiber amplifiers, the laser output power can be scale up to 46.8W, corresponding to single pulse energy of 3.54μJ. This laser has been used to study the ablation characteristic for different materials. Preliminary result shows that the ablation effect can be observed on stainless steel and aluminum surface when output power is 13W.
1. http://www.ipgphotonics.com/en.
2. Koester, C.J. and E. Snitzer, Amplification in a fiber laser. Applied optics, 1964. 3(10): p. 1182-1186.
3. Stutzki, F., et al., High average power large-pitch fiber amplifier with robust single-mode operation. Optics letters, 2011. 36(5): p. 689-691.
4. Pottiez, O., et al., Adjustable noiselike pulses from a figure-eight fiber laser. Applied Optics, 2011. 50(25): p. E24-E31.
5. Kobtsev, S., et al., Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers. Optics Express, 2009. 17(23): p. 20707-20713.
6. An, Y., et al., Characteristics of pulse evolution in mode-locked thulium-doped fiber laser. Optics Communications, 2012. 285(7): p. 1949-1953.
7. Kobtsev, S. and S. Smirnov, Fiber lasers mode-locked due to nonlinear polarization evolution: golden mean of cavity length. Laser Physics, 2011. 21(2): p. 272-276.
8. Zhao, L., et al., Noise-like pulse in a gain-guided soliton fiber laser. Optics express, 2007. 15(5): p. 2145-2150.
9. Nie, B., et al., Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses. Optical Engineering, 2014. 53(5): p. 051505-051505.
10. Lu, K. and N.K. Dutta, Spectroscopic properties of Yb-doped silica glass. Journal of applied physics, 2002. 91(2): p. 576-581.
11. Paschotta, R., et al., Ytterbium-doped fiber amplifiers. IEEE Journal of quantum electronics, 1997. 33(7): p. 1049-1056.
12. Matsas, V., et al., Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation. Electron. Lett, 1992. 28(15): p. 1391-1393.
13. Planas, S., et al., Spectral narrowing in the propagation of chirped pulses in single-mode fibers. Optics letters, 1993. 18(9): p. 699-701.
14. Horowitz, M., Y. Barad, and Y. Silberberg, Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser. Optics letters, 1997. 22(11): p. 799-801.
15. Tang, D., L. Zhao, and B. Zhao, Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser. Optics Express, 2005. 13(7): p. 2289-2294.
16. Aguergaray, C., et al., Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability. Optics letters, 2013. 38(15): p. 2644-2646.
17. http://www.industrial-lasers.com/articles/print/volume-27/issue-04/features/fermtosecond-laser-micromachining-a-back-to-basics-primer.html. 20.
18. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462015000100063&lng=en&nrm=iso. 20.
19. Chaudhary, K., S.Z.H. Rizvi, and J. Ali, Laser-Induced Plasma and its Applications, in Plasma Science and Technology-Progress in Physical States and Chemical Reactions. 2016, InTech.
20. Raman, C.V. and K.S. Krishnan, A new type of secondary radiation. Nature, 1928. 121(3048): p. 501-502.
21. Lamb Jr, W.E., Theory of an optical maser. Physical Review, 1964. 134(6A): p. A1429.
22. Hargrove, L., R.L. Fork, and M. Pollack, Locking of He–Ne laser modes induced by synchronous intracavity modulation. Applied Physics Letters, 1964. 5(1): p. 4-5.
23. Shimizu, F., Frequency broadening in liquids by a short light pulse. Physical Review Letters, 1967. 19(19): p. 1097.
24. Stolen, R.H., E. Ippen, and A. Tynes, Raman oscillation in glass optical waveguide. Applied Physics Letters, 1972. 20(2): p. 62-64.
25. Ippen, E. and R. Stolen, Stimulated Brillouin scattering in optical fibers. Applied Physics Letters, 1972. 21(11): p. 539-541.
26. Stone, J. and C. Burrus, Neodymium-doped fiber lasers: room temperature cw operation with an injection laser pump. Applied Optics, 1974. 13(6): p. 1256-1258.
27. Barnes, W., et al., Er/sup 3+/-Yb/sup 3+/and Er/sup 3+/doped fiber lasers. Journal of Lightwave Technology, 1989. 7(10): p. 1461-1465.
28. Pask, H., et al., Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2/spl mu/m region. IEEE Journal of Selected Topics in Quantum Electronics, 1995. 1(1): p. 2-13.
29. Liu, X., D. Du, and G. Mourou, Laser ablation and micromachining with ultrashort laser pulses. IEEE journal of quantum electronics, 1997. 33(10): p. 1706-1716.
30. Nolte, S., et al., Ablation of metals by ultrashort laser pulses. JOSA B, 1997. 14(10): p. 2716-2722.
31. Goldberg, L., et al., High-power superfluorescent source with a side-pumped Yb-doped double-cladding fiber. Optics letters, 1998. 23(13): p. 1037-1039.
32. Barnes, N.P. and B.M. Walsh, Amplified spontaneous emission-application to Nd: YAG lasers. IEEE journal of quantum electronics, 1999. 35(1): p. 101-109.
33. Hönninger, C., et al., Q-switching stability limits of continuous-wave passive mode locking. JOSA B, 1999. 16(1): p. 46-56.
34. https://www.meddeviceonline.com/doc/femtosecond-laser-processing-of-metal-and-plastics-in-the-medical-device-industry-0001. 20.
35. https://www.trumpf.com/. 20.
36. Haus, H.A., Mode-locking of lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2000. 6(6): p. 1173-1185.
37. Platonov, N., et al. 135W CW fiber laser with perfect single mode output. in Lasers and Electro-Optics, 2002. CLEO'02. Technical Digest. Summaries of Papers Presented at the. 2002. IEEE.
38. Limpert, J., et al., High-average-power femtosecond fiber chirped-pulse amplification system. Optics letters, 2003. 28(20): p. 1984-1986.
39. Liem, A., et al., 100-W single-frequency master-oscillator fiber power amplifier. Optics Letters, 2003. 28(17): p. 1537-1539.
40. Keller, U., Recent developments in compact ultrafast lasers. nature, 2003. 424(6950): p. 831-838.
41. Wang, Y., C.-Q. Xu, and H. Po, Analysis of Raman and thermal effects in kilowatt fiber lasers. Optics communications, 2004. 242(4): p. 487-502.
42. Ilday, F., et al., Self-similar evolution of parabolic pulses in a laser. Physical review letters, 2004. 92(21): p. 213902.
43. Dupriez, P., et al., High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs. Optics express, 2006. 14(21): p. 9611-9616.
44. Adhimoolam, B., et al., Wavelength-Tunable Short-Pulse Diode-Laser Fiber-Amplifier System Around 1.06$ muhbox m$. IEEE photonics technology letters, 2006. 18(7): p. 838-840.
45. Yang, J., Y. Zhao, and X. Zhu, Transition between nonthermal and thermal ablation of metallic targets under the strike of high-fluence ultrashort laser pulses. Applied physics letters, 2006. 88(9): p. 094101.
46. Budz, A., et al., Ultrashort pulses from a mode-locked diode-oscillator Yb-fiber-amplifier system. IEEE Photonics Technology Letters, 2007. 19(2): p. 94-96.
47. Brooks, C.D. and F. Di Teodoro, High peak power operation and harmonic generation of a single-polarization, Yb-doped photonic crystal fiber amplifier. Optics Communications, 2007. 280(2): p. 424-430.
48. Agrawal, G.P., Nonlinear fiber optics. 2007: Academic press.
49. Thieme, J., Fiber Laser–new challenges for the Materials Processing. Laser Technik Journal, 2007. 4(3): p. 58-60.
50. Ancona, A., et al., High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system. Optics express, 2008. 16(12): p. 8958-8968.
51. Zhao, L., et al., 120nm Bandwidth noise-like pulse generation in an erbium-doped fiber laser. Optics Communications, 2008. 281(1): p. 157-161.
52. Ancona, A., et al., Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers. Optics letters, 2009. 34(21): p. 3304-3306.
53. Limpert, J., et al., High repetition rate gigawatt peak power fiber laser systems: challenges, design, and experiment. IEEE Journal of Selected Topics in Quantum Electronics, 2009. 15(1): p. 159-169.
54. Zhang, Y., et al., High-power continuous wave green beam generation by use of simple linear cavity with side-pumped module. Optics Communications, 2010. 283(24): p. 5161-5164.
55. Deladurantaye, P., et al. Material micromachining using bursts of high repetition rate picosecond pulses from a fiber laser source. in Proc. SPIE. 2011.
56. Wang, L., et al., Ultra-broadband high-energy pulse generation and evolution in a compact erbium-doped all-fiber laser. Laser Physics Letters, 2011. 8(5): p. 376.
57. Zaytsev, A., et al., Robust diode-end-pumped Nd: GdVO4 laser passively mode-locked with saturable output coupler. Laser Physics, 2011. 21(12): p. 2029-2035.
58. Zhang, Y., et al., Diode-pumped doubly Q-switched mode-locked YVO 4/Nd: YVO 4/KTP green laser with AO and GaAs saturable absorber. Optical Materials, 2011. 33(3): p. 303-307.
59. Lopez, J., et al. Comparison of picosecond and femtosecond laser ablation for surface engraving of metals and semiconductors. in Key Engineering Materials. 2012. Trans Tech Publ.
60. Neuenschwander, B., et al. Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs. in SPIE LASE. 2012. International Society for Optics and Photonics.
61. Hernandez-Garcia, J., et al., Numerical analysis of a broadband spectrum generated in a standard fiber by noise-like pulses from a passively mode-locked fiber laser. Optics Communications, 2012. 285(7): p. 1915-1919.
62. Vazquez-Zuniga, L.A. and Y. Jeong, Super-broadband noise-like pulse erbium-doped fiber ring laser with a highly nonlinear fiber for Raman gain enhancement. IEEE Photonics Technology Letters, 2012. 24(17): p. 1549-1551.
63. Song, R., et al., High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier. Optics letters, 2012. 37(9): p. 1529-1531.
64. Smirnov, S., et al., Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation. Optics express, 2012. 20(24): p. 27447-27453.
65. Hernandez-Garcia, J., O. Pottiez, and J. Estudillo-Ayala, Supercontinuum generation in a standard fiber pumped by noise-like pulses from a figure-eight fiber laser. Laser Physics, 2012. 22(1): p. 221-226.
66. Shaheen, M., J. Gagnon, and B. Fryer, Laser ablation of iron: A comparison between femtosecond and picosecond laser pulses. Journal of Applied Physics, 2013. 114(8): p. 083110.
67. Döring, S., et al., Hole formation process in ultrashort pulse laser percussion drilling. Physics Procedia, 2013. 41: p. 431-440.
68. Cerami, L., et al., Femtosecond laser micromachining, in Ultrafast nonlinear optics. 2013, Springer. p. 287-321.
69. Balling, P. and J. Schou, Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films. Reports on Progress in Physics, 2013. 76(3): p. 036502.
70. Teh, P.S., et al., 200 W Diffraction limited, single-polarization, all-fiber picosecond MOPA. Optics express, 2013. 21(22): p. 25883-25889.
71. Jauregui, C., J. Limpert, and A. Tünnermann, High-power fibre lasers. Nature photonics, 2013. 7(11): p. 861-867.
72. Zaytsev, A., et al., A controllable noise-like operation regime in a Yb-doped dispersion-mapped fiber ring laser. Laser Physics Letters, 2013. 10(4): p. 045104.
73. Sugioka, K. and Y. Cheng, Ultrafast lasers—reliable tools for advanced materials processing. Light: Science & Applications, 2014. 3(4): p. e149.
74. Lin, S.-S., S.-K. Hwang, and J.-M. Liu, Supercontinuum generation in highly nonlinear fibers using amplified noise-like optical pulses. Optics express, 2014. 22(4): p. 4152-4160.
75. Rowen, E.E., et al. A scalable high-power yellow laser source based on frequency doubling of a combined Yb-Raman fiber amplifier. in Proc. of SPIE Vol. 2014.
76. Chan, H.-Y., et al., Compact, high-pulse-energy, high-power, picosecond master oscillator power amplifier. Optics express, 2014. 22(18): p. 21938-21943.
77. Zervas, M.N. and C.A. Codemard, High power fiber lasers: a review. IEEE Journal of selected topics in Quantum Electronics, 2014. 20(5): p. 219-241.
78. Liu, H., et al. High-power femtosecond fiber lasers based on self-similar pulse evolution. in SPIE Photonics Europe. 2014. International Society for Optics and Photonics.
79. Chen, Q., et al., Study on the effect of laser-induced plasma plume on penetration in fiber laser welding under subatmospheric pressure. The International Journal of Advanced Manufacturing Technology, 2015. 78(1-4): p. 331-339.
80. Phillips, K.C., et al., Ultrafast laser processing of materials: a review. Advances in Optics and Photonics, 2015. 7(4): p. 684-712.
81. Suzuki, M., et al., Generation of broadband noise-like pulse from Yb-doped fiber laser ring cavity. Optics letters, 2015. 40(5): p. 804-807.
82. Lin, S.-S., S.-K. Hwang, and J.-M. Liu, High-power noise-like pulse generation using a 1.56-µm all-fiber laser system. Optics express, 2015. 23(14): p. 18256-18268.
83. Yu, H., et al., High average/peak power linearly polarized all-fiber picosecond MOPA seeded by mode-locked noise-like pulses. Laser Physics Letters, 2015. 12(6): p. 065103.
84. Parker, G.J., et al., Laser-induced Breakdown Spectroscopy and ablation threshold analysis using a megahertz Yb fiber laser oscillator. Spectrochimica Acta Part B: Atomic Spectroscopy, 2015. 107: p. 146-151.
85. You, Y.-J., et al., Ultrahigh-resolution optical coherence tomography at 1.3 μm central wavelength by using a supercontinuum source pumped by noise-like pulses. Laser Physics Letters, 2015. 13(2): p. 025101.
86. Rifin, S., et al., Broadband supercontinuum generation with femtosecond pulse width in erbium-doped fiber laser (EDFL). Laser Physics, 2016. 26(11): p. 115102.
87. Uchtmanna, H., C. Hea, and A. Gillnera. High precision and high aspect ratio laser drilling–Challenges and Solutions. in Proc. of SPIE Vol. 2016.
88. Zou, F., et al. 1-MW peak power, 574-kHz repetition rate picosecond pulses at 515 nm from a frequency-doubled fiber amplifier. in SPIE/COS Photonics Asia. 2016. International Society for Optics and Photonics.
89. Yu, Z., et al., 110 W all-fiber picosecond master oscillator power amplifier based on large-core-diameter ytterbium-doped fiber. Applied optics, 2016. 55(15): p. 4119-4122.
90. Wang, X., et al., All-fiber high-average power nanosecond-pulsed master-oscillator power amplifier at 2 μm with mJ-level pulse energy. Applied optics, 2016. 55(8): p. 1941-1945.
91. Li, K., et al. Experimental investigation of high energy noise-like pulses from a long cavity erbium-doped fiber laser. in SPIE/COS Photonics Asia. 2016. International Society for Optics and Photonics.
92. Wei, K., et al., High power burst-mode operated sub-nanosecond fiber laser based on 20/125 μm highly doped Yb fiber. Laser Physics, 2016. 26(2): p. 025104.
93. Ikoma, S., et al. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing. in Proc. of SPIE Vol. 2017.
94. Suzuki, M., S. Yoneya, and H. Kuroda. Single-shot spectroscopy of broadband Yb fiber laser. in Proc. of SPIE Vol. 2017.
95. Zhang, H., et al., High power double-scale pulses from a gain-guided double-clad fiber laser. Laser Physics Letters, 2017. 14(3): p. 035101.