簡易檢索 / 詳目顯示

研究生: 張珈尹
Chia-Yin Chang
論文名稱: 利用哺乳動物細胞表現嚴重急性呼吸道症候群冠狀病毒之棘蛋白片段
Production of Truncated Severe Acute Respiratory Syndrome Coronavirus Spike Protein by Mammalian Cell Expression System
指導教授: 吳夙欽
Suh-Chin Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 96
中文關鍵詞: 嚴重急性呼吸道症候群冠狀病毒疫苗哺乳動物細胞醣蛋白基因放大棘蛋白
外文關鍵詞: severe acute respiratory syndrome, coronavirus, SARS, CHO, Endo H, exon splicing enhancers, intron, DHFR, dihydrofolate reductase, methotrexate, MTX, ESE
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 嚴重急性呼吸道症候群冠狀病毒(SARS-CoV)的套膜Spike蛋白(S蛋白)在疫苗的研發上扮演了很重要的角色。截短的SARS-CoV TW1 病毒株之S蛋白 ─「SNHRI」(包含有三個S蛋白片段:S74-253、S294-739和S1129-1255,分子量為88 kDa)可在哺乳動物細胞中被表現出來。在哺乳動物細胞表現載體中加入一個138bp的intron可以分別在CHO/dhFr-細胞、Vero E6細胞和QBI-293A細胞中提升SNHRI蛋白的表現量達4倍、1.9倍和2.5倍。近一步的研究發現,由哺乳動物細胞表現出來的SNHRI蛋白主要是以對Endo H酵素敏感的醣蛋白形式(~115 kDa)存在,但CHO/dhFr-細胞及Vero E6細胞亦可製造少量可資抵抗Endo H酵素的 ~130 kDa SNHRI蛋白。在哺乳動物細胞表現載體中加入兩種Exon splicing enhancer (ESE): Bidirectional splicing enhancer (BSE) 以及fibronectin EDA exon中的ESE (EDA ESE)可在CHO/dhFr-細胞中比無intron載體之SNHRI表現量提高1.7倍或2.6倍。當同時加入ESE和intron時,intron之提升SNHRI蛋白表現量的能力反而受到些許的抑制。為了建立可穩定大量表現SNHRI蛋白之CHO細胞,含有接在internal ribosome entry site後方之dihydrofolate reductase (dhfr)基因的兩個SNHRI表現載體(pSID與pISID)被建構出來,其中的pISID載體中含有一個138bp的intron。為了增加SNHRI蛋白在細胞株中的表現量,逐步提高之Methotrexate (MTX)濃度被用來篩選以pSID與pISID transfect的CHO/dhFr-細胞並引導SNHRI之基因在染色體中增加。兩種不同分子量之 SNHRI醣蛋白(~98與~115 kDa)可被穩定表現SNHRI的單一細胞株製造出來。其中,十二個穩定表現~115 kDa SNHRI蛋白的細胞株被挑選出來作進一步的基因放大。這份研究可作為日後發展哺乳動物細胞SARS-CoV單元疫苗之重要參考。


    The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is important for vaccine development. The truncated SARS-CoV TW1 S protein, SNHRI (88 kDa), carrying three S fragments (S74-253, S294-739, and S1129-1255) was expressed in mammalian cells. Mammalian cell expression of SNHRI glycoprotein with the use of a 138bp intron was found to increase by 1.9 folds, 2.5 folds, and 4.1 folds in Vero E6, QBI-293A cells, and CHO/dhFr- cells (dihydrofolate reductase [dhfr] gene deficient CHO cells), respectively. The expressed SNHRI glycoprotein was mainly Endo H-sensitive (~115 kDa glycoproteins) in these three mammalian cell lines. A minor form of Endo H-resistant glycoproteins (~130 kDa) was also found in CHO/dhFr- cells and VeroE6 cells. Expression vectors using the exon splicing enhancers, such as bidirectional splicing enhancer (BSE) or an exon splicing enhancer derived from the EDA alternative exon of the fibronectin gene (EDA ESE), was also found to increase SNHRI protein expression by 1.7 and 2.6 folds as compared to the intronless expression vector. Coupling BSE or EDA ESE with the 138bp intron leaded to suppression of the intron-enhancing effect. In order to establish stably expressing CHO cell clones, a stepwise methotrexate (MTX) selection was conducted in the CHO/dhFr- cells transfected with two amplifiable expression vectors, pSID (without intron) and pISID (with intron), containing a dhfr gene placed after an internal ribosome entry sites. Twelve stable cell clones expressing higher amount of ~115 kDa SNHRI protein were selected for gene amplification. This study provides useful information for future development of mammalian cell based SARS-CoV subunit vaccines.

    Chinese abstract English abstract Acknowledgments Content 1. Introduction 1.1. Severe Acute Respiratory Syndrome Coronavirus 1.1.1. Epidemiology of SARS-CoV 1.1.2. Basic Virology of SARS-CoV 1.1.3. The Genome and Virus Structure of SARS-CoV 1.1.4. SARS-CoV Spike Protein 1.1.5. Binding of SARS-CoV Spike Protein to Receptors 1.1.6. Spike Protein as Target for SARS-CoV Vaccine Development 1.2. Mammalian Cell Expression System 1.2.1. Overview of Mammalian Cell Expression Systems 1.2.2. CHO/dhFr- Cell Expression Systems 1.2.3. Dihydrofolate Reductase Gene Amplification 1.3. The Influence of Intron and Exon Splicing Enhancers on Eukaryotic Gene Expression 1.3.1. The Common Structure of an Eukaryotic Intron 1.3.2. Overview of The Influence of Intron on Protein Expression 1.3.2.1 Splicing and Exon Junction Complex Formation 1.3.2.2 The Influence of Intron on mRNA Transcription 1.3.2.3 The Influence of Intron on Poly(A)-tail Addition 1.3.2.4 Effects of Splicing on mRNA Export 1.3.2.5 The Relationship Between Intron and Translation 1.3.2.6 The Difference of Intron Dependence and Enhancing effect among various gene and cell lines 1.3.3. Overview of the Influence of Exon Splicing Enhancer on Protein Expression 1.3.3.1 The Exon Splicing Enhancer of Fibronectin EDA Exon 1.3.3.2 Bidirectional Splicing Enhancer 2. Materials and Methods 2.1. Cell Lines and Mediums 2.2. Vectors Construction 2.2.1. S NHRI 2.2.2. Intron, Bidirectional splicing enhancer, and Exon splicing enhancer 2.2.3. Expression Vector Construction for DHFR/MTX Gene Amplification 2.3. Transient Expression in Mammalian Cells 2.4. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis and Western Blot Analysis 2.5. PNGase F Treatment of SNHRI Protein 2.6. Endo H Treatment of SNHRI Protein 2.7. Selection and Gene Amplification of Clones that Can Stably Express SNHRI Protein 3. Results 3.1. SNHRI and SFL Construction and Expression 3.2. Optimization of SNHRI Expression with Intron and Exon Splicing Enhancers 3.2.1. SNHRI Expression Efficiency in Different Cell Lines During the Presence or Absence of an Intron 3.2.2. Glycosylation of SNHRI Expressed in CHO/dhFr- Cells by Intron Containing Construct 3.2.3. The Enhancing Effect of EDA ESE and BSE in SNHRI Expression During the Presence or Absence of an Intron 3.3. DHFR/MTX Gene Amplification for Establishing Stable CHO Cell clones that Express SNHRI Protein 4. Discussion 4.1. SARS-CoV SNHRI & SFL Protein Expression in CHO/dhFr- Cells 4.2. Intron Addition for SNHRI Mammalian Cell Expression 4.3. Exon Splicing Enhancers for SNHRI Expression in CHO/dhFr- Cells 4.4. Glycosylation Patterns of SNHRI Produced in CHO/dhFr- Cells 4.5. Conclusion 5. Appendix 5.1. The DNA Sequence of SFL 5.2. The Protein Sequence of SFL 5.3. The DNA Sequence of SNHRI 5.4. The Protein Sequence of SNHRI Appendix Table 1. The putative N-linked glycosylation sites of SFL and SNHRI Appendix Figure 1. Selection of SNHRI expressing SID cell clones Appendix Figure 2. Selection of SNHRI expressing ISID cell clones Figures Fig.1. The genome and virus structure of SARS-CoV Fig.2. SARS-CoV Spike protein Fig.3. Dihydrofolate reductase (DHFR) related metabolism pathway Fig.4. The flowchart of establishing amplified stable cell clones expressing recombinant proteins in CHO/dhfr- expression system Fig.5. Construction and CHO/dhFr- cell transient expression of pSFL and pS vectors Fig.6. The influence of intron addition on SNHRI expression Fig.7. The N-linked glycosylation pattern of SNHRI protein Fig.8. Analysis of SNHRI expression efficiency when BSE or EDA ESE was placed in SNHRI open reading frame Fig.9. Analysis of SNHRI expression efficiency when EDA ESE was placed in the 5’-UTR of SNHRI expressing vectors Fig.10. Construction of amplifiable vectors, pSID and pISID Fig.11. SNHRI expression in selected SID and ISID cell clones Fig.12. Schematic figure of SID stable clone selection and gene amplification Fig.13. Schematic figure of ISID stable clone selection and gene amplification Fig.14. MTX selection process could lead to higher SNHRI expression Fig.15. The SNHRI expression efficiency of selected cell clones after 0.02uM MTX selections 6. References

    Babcock, G.J., Esshaki, D.J., Thomas, W.D., Jr. and Ambrosino, D.M. (2004) Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor. J Virol, 78, 4552-4560.
    Bisht, H., Roberts, A., Vogel, L., Bukreyev, A., Collins, P.L., Murphy, B.R., Subbarao, K. and Moss, B. (2004) Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci U S A, 101, 6641-6646.
    Bonavia, A., Zelus, B.D., Wentworth, D.E., Talbot, P.J. and Holmes, K.V. (2003) Identification of a receptor-binding domain of the spike glycoprotein of human coronavirus HCoV-229E. J Virol, 77, 2530-2538.
    Bourgeois, C.F., Popielarz, M., Hildwein, G. and Stevenin, J. (1999) Identification of a bidirectional splicing enhancer: differential involvement of SR proteins in 5' or 3' splice site activation. Mol Cell Biol, 19, 7347-7356.
    Bradel-Tretheway, B.G., Zhen, Z. and Dewhurst, S. (2003) Effects of codon-optimization on protein expression by the human herpesvirus 6 and 7 U51 open reading frame. J Virol Methods, 111, 145-156.
    Brodsky, A.S. and Silver, P.A. (2000) Pre-mRNA processing factors are required for nuclear export. Rna, 6, 1737-1749.
    Brown, C.R., Hong-Brown, L.Q., Biwersi, J., Verkman, A.S. and Welch, W.J. (1996) Chemical chaperones correct the mutant phenotype of the delta F508 cystic fibrosis transmembrane conductance regulator protein. Cell Stress Chaperones, 1, 117-125.
    Buchholz, U.J., Bukreyev, A., Yang, L., Lamirande, E.W., Murphy, B.R., Subbarao, K. and Collins, P.L. (2004) Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc Natl Acad Sci U S A, 101, 9804-9809.
    Caputi, M., Casari, G., Guenzi, S., Tagliabue, R., Sidoli, A., Melo, C.A. and Baralle, F.E. (1994) A novel bipartite splicing enhancer modulates the differential processing of the human fibronectin EDA exon. Nucleic Acids Res, 22, 1018-1022.
    Caramelo, J.J., Castro, O.A., Alonso, L.G., De Prat-Gay, G. and Parodi, A.J. (2003) UDP-Glc:glycoprotein glucosyltransferase recognizes structured and solvent accessible hydrophobic patches in molten globule-like folding intermediates. Proc Natl Acad Sci U S A, 100, 86-91.
    Cartegni, L., Chew, S.L. and Krainer, A.R. (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet, 3, 285-298.
    Chapman, A.E. and Calhoun, J.C.t. (1988) Effects of glucose starvation and puromycin treatment on lipid-linked oligosaccharide precursors and biosynthetic enzymes in Chinese hamster ovary cells in vivo and in vitro. Arch Biochem Biophys, 260, 320-333.
    Colman, P.M. and Lawrence, M.C. (2003) The structural biology of type I viral membrane fusion. Nat Rev Mol Cell Biol, 4, 309-319.
    Custodio, N., Carmo-Fonseca, M., Geraghty, F., Pereira, H.S., Grosveld, F. and Antoniou, M. (1999) Inefficient processing impairs release of RNA from the site of transcription. Embo J, 18, 2855-2866.
    Denning, G.M., Anderson, M.P., Amara, J.F., Marshall, J., Smith, A.E. and Welsh, M.J. (1992) Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature, 358, 761-764.
    Dower, K. and Rosbash, M. (2002) T7 RNA polymerase-directed transcripts are processed in yeast and link 3' end formation to mRNA nuclear export. Rna, 8, 686-697.
    Ellgaard, L. and Helenius, A. (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol, 4, 181-191.
    Gallagher, T.M. and Buchmeier, M.J. (2001) Coronavirus spike proteins in viral entry and pathogenesis. Virology, 279, 371-374.
    Gawlitzek, M., Valley, U., Nimtz, M., Wagner, R. and Conradt, H.S. (1995) Characterization of changes in the glycosylation pattern of recombinant proteins from BHK-21 cells due to different culture conditions. J Biotechnol, 42, 117-131.
    Graveley, B.R. (2000) Sorting out the complexity of SR protein functions. Rna, 6, 1197-1211.
    Gray, D. (1997) Overview of Protein Expression by Mammalian Cells. In John E. Coligan, B.M.D., David W. Speicher, Paul T. Wingfield, and Hidde L. Ploegh (ed.), Current Protocols in Protein Science. John Wiley & Sons, Inc., New York, pp. 5.9.1-5.9.18.
    Gustafsson, C., Govindarajan, S. and Minshull, J. (2004) Codon bias and heterologous protein expression. Trends Biotechnol, 22, 346-353.
    He, Y., Zhou, Y., Liu, S., Kou, Z., Li, W., Farzan, M. and Jiang, S. (2004) Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem Biophys Res Commun, 324, 773-781.
    Hilleren, P., McCarthy, T., Rosbash, M., Parker, R. and Jensen, T.H. (2001) Quality control of mRNA 3'-end processing is linked to the nuclear exosome. Nature, 413, 538-542.
    Hofmann, H. and Pohlmann, S. (2004) Cellular entry of the SARS coronavirus. Trends Microbiol, 12, 466-472.
    Huang, Y., Gattoni, R., Stevenin, J. and Steitz, J.A. (2003) SR splicing factors serve as adapter proteins for TAP-dependent mRNA export. Mol Cell, 11, 837-843.
    Huang, Y. and Steitz, J.A. (2001) Splicing factors SRp20 and 9G8 promote the nucleocytoplasmic export of mRNA. Mol Cell, 7, 899-905.
    Huang, Y., Yang, Z.Y., Kong, W.P. and Nabel, G.J. (2004) Generation of synthetic severe acute respiratory syndrome coronavirus pseudoparticles: implications for assembly and vaccine production. J Virol, 78, 12557-12565.
    Inoue, K., Hoshijima, K., Higuchi, I., Sakamoto, H. and Shimura, Y. (1992) Binding of the Drosophila transformer and transformer-2 proteins to the regulatory elements of doublesex primary transcript for sex-specific RNA processing. Proc Natl Acad Sci U S A, 89, 8092-8096.
    Jeffers, S.A., Tusell, S.M., Gillim-Ross, L., Hemmila, E.M., Achenbach, J.E., Babcock, G.J., Thomas, W.D., Jr., Thackray, L.B., Young, M.D., Mason, R.J., Ambrosino, D.M., Wentworth, D.E., Demartini, J.C. and Holmes, K.V. (2004) CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A, 101, 15748-15753.
    Joseph Sambrook, D.W.R. (2001) Introducing Cloned Genes into Cultured Mammalian Cells. In Joseph Sambrook, D.W.R. (ed.), Molecular Cloning. Cold Spring Harbor Laboratory Press, New York, Vol. 3, pp. 16.11-16.61.
    Kataoka, N. and Dreyfuss, G. (2004) A simple whole cell lysate system for in vitro splicing reveals a stepwise assembly of the exon-exon junction complex. J Biol Chem, 279, 7009-7013.
    Kaufman, R.J. (1990) Selection and Coamplification of Heterologous Genes in Mammalian Cells. In Goeddel, D.V. (ed.), Methods in Enzymology. Academic Press, Inc, San Diego, Vol. 185, pp. 537-566.
    Kim, C.H., Oh, Y. and Lee, T.H. (1997) Codon optimization for high-level expression of human erythropoietin (EPO) in mammalian cells. Gene, 199, 293-301.
    Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Urbani, C., Comer, J.A., Lim, W., Rollin, P.E., Dowell, S.F., Ling, A.E., Humphrey, C.D., Shieh, W.J., Guarner, J., Paddock, C.D., Rota, P., Fields, B., DeRisi, J., Yang, J.Y., Cox, N., Hughes, J.M., LeDuc, J.W., Bellini, W.J. and Anderson, L.J. (2003) A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med, 348, 1953-1966.
    Kuhn, J.H., Li, W., Choe, H. and Farzan, M. (2004) Angiotensin-converting enzyme 2: a functional receptor for SARS coronavirus. Cell Mol Life Sci, 61, 2738-2743.
    Kunkel, J.P., Jan, D.C., Jamieson, J.C. and Butler, M. (1998) Dissolved oxygen concentration in serum-free continuous culture affects N-linked glycosylation of a monoclonal antibody. J Biotechnol, 62, 55-71.
    Le Hir, H., Izaurralde, E., Maquat, L.E. and Moore, M.J. (2000) The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. Embo J, 19, 6860-6869.
    Le Hir, H., Nott, A. and Moore, M.J. (2003) How introns influence and enhance eukaryotic gene expression. Trends Biochem Sci, 28, 215-220.
    Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Sullivan, J.L., Luzuriaga, K., Greenough, T.C., Choe, H. and Farzan, M. (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426, 450-454.
    Liu, Y., Choudhury, P., Cabral, C.M. and Sifers, R.N. (1999) Oligosaccharide modification in the early secretory pathway directs the selection of a misfolded glycoprotein for degradation by the proteasome. J Biol Chem, 274, 5861-5867.
    Lu, S. and Cullen, B.R. (2003) Analysis of the stimulatory effect of splicing on mRNA production and utilization in mammalian cells. Rna, 9, 618-630.
    Luo, M.J. and Reed, R. (1999) Splicing is required for rapid and efficient mRNA export in metazoans. Proc Natl Acad Sci U S A, 96, 14937-14942.
    Marra, M.A., Jones, S.J., Astell, C.R., Holt, R.A., Brooks-Wilson, A., Butterfield, Y.S., Khattra, J., Asano, J.K., Barber, S.A., Chan, S.Y., Cloutier, A., Coughlin, S.M., Freeman, D., Girn, N., Griffith, O.L., Leach, S.R., Mayo, M., McDonald, H., Montgomery, S.B., Pandoh, P.K., Petrescu, A.S., Robertson, A.G., Schein, J.E., Siddiqui, A., Smailus, D.E., Stott, J.M., Yang, G.S., Plummer, F., Andonov, A., Artsob, H., Bastien, N., Bernard, K., Booth, T.F., Bowness, D., Czub, M., Drebot, M., Fernando, L., Flick, R., Garbutt, M., Gray, M., Grolla, A., Jones, S., Feldmann, H., Meyers, A., Kabani, A., Li, Y., Normand, S., Stroher, U., Tipples, G.A., Tyler, S., Vogrig, R., Ward, D., Watson, B., Brunham, R.C., Krajden, M., Petric, M., Skowronski, D.M., Upton, C. and Roper, R.L. (2003) The Genome sequence of the SARS-associated coronavirus. Science, 300, 1399-1404.
    Noe, V., MacKenzie, S. and Ciudad, C.J. (2003) An intron is required for dihydrofolate reductase protein stability. J Biol Chem, 278, 38292-38300.
    Nott, A., Le Hir, H. and Moore, M.J. (2004) Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev, 18, 210-222.
    Nott, A., Meislin, S.H. and Moore, M.J. (2003) A quantitative analysis of intron effects on mammalian gene expression. Rna, 9, 607-617.
    Nyberg, G.B., Balcarcel, R.R., Follstad, B.D., Stephanopoulos, G. and Wang, D.I. (1999) Metabolic effects on recombinant interferon-gamma glycosylation in continuous culture of Chinese hamster ovary cells. Biotechnol Bioeng, 62, 336-347.
    Ou, W.J., Cameron, P.H., Thomas, D.Y. and Bergeron, J.J. (1993) Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature, 364, 771-776.
    Peiris, J.S., Lai, S.T., Poon, L.L., Guan, Y., Yam, L.Y., Lim, W., Nicholls, J., Yee, W.K., Yan, W.W., Cheung, M.T., Cheng, V.C., Chan, K.H., Tsang, D.N., Yung, R.W., Ng, T.K. and Yuen, K.Y. (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet, 361, 1319-1325.
    Pozzoli, U., Riva, L., Menozzi, G., Cagliani, R., Comi, G.P., Bresolin, N., Giorda, R. and Sironi, M. (2004) Over-representation of exonic splicing enhancers in human intronless genes suggests multiple functions in mRNA processing. Biochem Biophys Res Commun, 322, 470-476.
    Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Penaranda, S., Bankamp, B., Maher, K., Chen, M.H., Tong, S., Tamin, A., Lowe, L., Frace, M., DeRisi, J.L., Chen, Q., Wang, D., Erdman, D.D., Peret, T.C., Burns, C., Ksiazek, T.G., Rollin, P.E., Sanchez, A., Liffick, S., Holloway, B., Limor, J., McCaustland, K., Olsen-Rasmussen, M., Fouchier, R., Gunther, S., Osterhaus, A.D., Drosten, C., Pallansch, M.A., Anderson, L.J. and Bellini, W.J. (2003) Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science, 300, 1394-1399.
    Sanford, J.R., Gray, N.K., Beckmann, K. and Caceres, J.F. (2004) A novel role for shuttling SR proteins in mRNA translation. Genes Dev, 18, 755-768.
    Sato, S., Ward, C.L., Krouse, M.E., Wine, J.J. and Kopito, R.R. (1996) Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J Biol Chem, 271, 635-638.
    Song, H.C., Seo, M.Y., Stadler, K., Yoo, B.J., Choo, Q.L., Coates, S.R., Uematsu, Y., Harada, T., Greer, C.E., Polo, J.M., Pileri, P., Eickmann, M., Rappuoli, R., Abrignani, S., Houghton, M. and Han, J.H. (2004) Synthesis and characterization of a native, oligomeric form of recombinant severe acute respiratory syndrome coronavirus spike glycoprotein. J Virol, 78, 10328-10335.
    Spiga, O., Bernini, A., Ciutti, A., Chiellini, S., Menciassi, N., Finetti, F., Causarono, V., Anselmi, F., Prischi, F. and Niccolai, N. (2003) Molecular modelling of S1 and S2 subunits of SARS coronavirus spike glycoprotein. Biochem Biophys Res Commun, 310, 78-83.
    Stadler, K., Masignani, V., Eickmann, M., Becker, S., Abrignani, S., Klenk, H.D. and Rappuoli, R. (2003) SARS--beginning to understand a new virus. Nat Rev Microbiol, 1, 209-218.
    Taguchi, F. (1995) The S2 subunit of the murine coronavirus spike protein is not involved in receptor binding. J Virol, 69, 7260-7263.
    Tange, T.O., Nott, A. and Moore, M.J. (2004) The ever-increasing complexities of the exon junction complex. Curr Opin Cell Biol, 16, 279-284.
    Thiel, V., Ivanov, K.A., Putics, A., Hertzig, T., Schelle, B., Bayer, S., Weissbrich, B., Snijder, E.J., Rabenau, H., Doerr, H.W., Gorbalenya, A.E. and Ziebuhr, J. (2003) Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol, 84, 2305-2315.
    Walsh, G. (2003) Biopharmaceuticals thus far approved in the USA or European Union. In Walsh, G. (ed.), Biopharmaceuticals. John Wiley & Sons, Ltd, West Sussex, pp. 499-507.
    Ware, F.E., Vassilakos, A., Peterson, P.A., Jackson, M.R., Lehrman, M.A. and Williams, D.B. (1995) The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J Biol Chem, 270, 4697-4704.
    Wiegand, H.L., Lu, S. and Cullen, B.R. (2003) Exon junction complexes mediate the enhancing effect of splicing on mRNA expression. Proc Natl Acad Sci U S A, 100, 11327-11332.
    Wurm, F.M. (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol, 22, 1393-1398.
    Xiao, X., Chakraborti, S., Dimitrov, A.S., Gramatikoff, K. and Dimitrov, D.S. (2003) The SARS-CoV S glycoprotein: expression and functional characterization. Biochem Biophys Res Commun, 312, 1159-1164.
    Yang, M. and Butler, M. (2002) Effects of ammonia and glucosamine on the heterogeneity of erythropoietin glycoforms. Biotechnol Prog, 18, 129-138.
    Yang, Z.Y., Kong, W.P., Huang, Y., Roberts, A., Murphy, B.R., Subbarao, K. and Nabel, G.J. (2004) A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature, 428, 561-564.
    Yang, Z.Y., Werner, H.C., Kong, W.P., Leung, K., Traggiai, E., Lanzavecchia, A. and Nabel, G.J. (2005) Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses. Proc Natl Acad Sci U S A, 102, 797-801.
    Yount, B., Curtis, K.M., Fritz, E.A., Hensley, L.E., Jahrling, P.B., Prentice, E., Denison, M.R., Geisbert, T.W. and Baric, R.S. (2003) Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A, 100, 12995-13000.
    Zhang, H., Wang, G., Li, J., Nie, Y., Shi, X., Lian, G., Wang, W., Yin, X., Zhao, Y., Qu, X., Ding, M. and Deng, H. (2004) Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies. J Virol, 78, 6938-6945.
    Zhou, T., Wang, H., Luo, D., Rowe, T., Wang, Z., Hogan, R.J., Qiu, S., Bunzel, R.J., Huang, G., Mishra, V., Voss, T.G., Kimberly, R. and Luo, M. (2004) An exposed domain in the severe acute respiratory syndrome coronavirus spike protein induces neutralizing antibodies. J Virol, 78, 7217-7226.
    Zhou, Z., Luo, M.J., Straesser, K., Katahira, J., Hurt, E. and Reed, R. (2000) The protein Aly links pre-messenger-RNA splicing to nuclear export in metazoans. Nature, 407, 401-405.
    Zong, Q., Schummer, M., Hood, L. and Morris, D.R. (1999) Messenger RNA translation state: the second dimension of high-throughput expression screening. Proc Natl Acad Sci U S A, 96, 10632-10636.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE