研究生: |
楊子賢 Tzu-Hsien Yang |
---|---|
論文名稱: |
鈦矽化物奈米微晶及矽鍺上一維有序鈦矽化物之研究 Titanium Silicide Nanocrystallites and One-Dimension Ordered Ti-Silicide Arrays on SiGe Substrate |
指導教授: |
陳力俊
Lih-Juann Chen |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 159 |
中文關鍵詞: | 鈦矽化物 、奈米微晶 、自我組裝 、非晶質 、矽鍺基材 |
外文關鍵詞: | Ti-silicide, nanocrystallite, self assemble, amorphous, Si Ge substrate |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要分成兩部分:
第一部份分三個子題,包括:
1.研究鈦沈積於結晶(001)矽上, 分佈於鈦矽非晶質界面中奈米初始微晶相在低溫環境的相變化情形
2.非均勻混合下的多層非晶質鈦矽的初始奈米微晶相生成的情形
3.常溫下均勻混合下的多層非晶質鈦矽的初始奈米微晶相生成的研究
2 nm以下厚度的奈米鈦矽多層薄膜結構將可以得到一個均勻的混合層, 並可利用高解析穿透式電子顯微鏡觀察富矽的高溫穩定相於室溫的環境即可產生高溫相的奈米微晶。
另一方面,在金屬與矽鍺合金之間夾一層適當厚度的非晶質二氧化矽。由本研究中可看出在此方法下,對於二矽化鈦金屬矽化物,可達到防止鍺偏析、降低矽化物生成溫度、促使界面平整、以及提高一維排列的良好成效。
自組裝(Self-assembled)奈米點亦為當前重要研究課題之一。矽鍺合金在成長過程中由於受到矽基材表面切割偏離(Miscut)的影響,以及應力的產生,造成表面形成一維波浪狀的層級會聚(Step Bunching)結構。本研究利用此一現象,以矽鍺合金表面作為模板,於其上成長奈米尺度的低電阻率金屬矽化物,所生成的矽化鎳奈米點不僅尺度小且均一具有一維的規則性排列。
The first part includes:
1. Formation of Ti silicide nanocrystals in the amorphous interlayers in ultrahigh vacuum deposited Ti thin films on (001) Si,
2. Auto correlation function analysis of phase formation in the initial stage of interfacial reactions of multilayered titanium-silicon thin films,
3. Formation of titanium silicides in well-mixed multilayered Ti-Si thin films at room temperature.
The second part is on self-assembled TiSi2 quantum dot arrays on relaxed epitaxial Si0.7Ge0.3 on (001)Si. The formation of the one-dimensional ordered structure is attributed to the nucleation of TiSi2 nanodots on the surface undulations induced by step bunching on the surface of SiGe film. The step bunching is owing to the miscut of the wafers from normal to the (001)Si direction.
Chapter 1
[1.1.1] H. Moissan, "The Electric Furnace," (English Transl. by A. de Mouilpied) Edward Arnold, London, 1904.
[1.1.2] R. Wehrmann, in "High-Temperature Materials and Technology," (I. E. Campbell and E. M. Sherwood, eds.) Wiley, New York, 1967, 399.
[1.1.3] B. N. Padnos, "Integrated Silicon Device Technology," Vol. X. Chemical/Metallurgical Properties of Silicon, Research Triangle Inst., North Carolina, 1965.
[1.1.4] M. P. Lepselter and J. M. Andrews, in "Ohmic Contacts to Semiconductors," (B. Schwartz, ed.) Electrochem. Soc., Princeton, New Jersey, 1969, 159.
[1.1.5] K. N. Tu and J. W. Mayer in "Thin Films-Interdiffusion and Reactions," (J. M. Poate, K. N. Tu and J. W. Mayer, eds.) Wiley, New York, 1978, 359.
[1.1.6] D. M. Brown, W. E. Engeler, M. Garfinkel, and P. V. Gray, "Refractory Metal Silicon Device Technology," Solid State Electron. 11, 1105-1112 (1968).
[1.1.7] S. P. Murarka, "Interaction in Metallization Systems for Integrated Circuits," J. Vac. Sci. Techno. B2, 693-706 (1984).
[1.1.8] P. S. Ho, "Basic Problems in Interconnect Metallization for VLSI Applications," Proc. ROC IEDMS, Edited by L. J. Chen (Hsinchu, ROC,1984) p.471.
[1.1.9] A. Y. C. Yu, "Electron Tunneling and Contact Resistance of Metal Silicon Contact Barriers," Solid-State Electron 13, 239-247 (1970).
[1.1.10] S. P. Murarka, "Refractory Silicides for Integrated Circuits," J. Vac. Sci. Technol. 17, 775-792 (1980).
[1.1.11] M. A. Nicolet, "Diffusion Barriers in Thin Films," Thin Solid Films, 52, 415-443 (l978).
[1.1.12] P. S. Ho, "General Aspects of Barrier Layers for Very Large Scale Integration Applications," Thin Solid Films, 96, 301-316 (1982).
[1.1.13] H. H. Hosak, "Electrical and Mechanical Features of the Platinum Silicide-Aluminum Reaction," J. Appl. Phys. 44, 3476-3485 (1973).
[1.1.14] H. Grinolds and G. Y. Robinson, "Study of Al/Pd2Si Contacts on Si," J. Vac. Sci. Technol. 14, 75-78 (1977).
[1.1.15] E. Hokelek and G. Y. Robinson, "Aluminum/nickel Silicide Contacts on Silicon," Thin Solid Films, 53, 135-140 (1978).
[1.1.16] C. Y. Tine and M. Wittmer, "Investigation of the Al/TiSi2/Si Contact System," J. Appl. Phys. 54, 937-943 (1983).
[1.1.17] J. A. Cunningham, P. R. Fuller. and C. T. Haywood, "Corrosion Resistance of Several Integrated-Circuit Metallization Systems," IEEE Trans. Reliab. 19. 182-187 (1970).
[1.1.18] C. Y. Ting and M. Wittmer. "The Use of Titanium-Based Contact Barrier Layers in Silicon Technology," Thin Solid Films, 96, 327-345 (1982).
[1.1.19] K. N. Tu, "Shallow and Parallel Silicide Contacts," J. Vac. Sci. Technol. 19, 766-777 (1981).
[1.1.20] A. N. Saxena and D. Pramanik, "VLSI Multilevel Metallization," Solid State Technol. 27, 93-100 (1984).
[1.1.21] A. K. Sinha, "Refractory Metal Silicides for VLSI Applications," J. Vac. Sci. Technol. 19, 778-785 (1981).
[1.1.22] S. P. Murarka, "Silicides for VLSI Applications," (Academic Press0, Orlando, Florida, (1983) p.1.
[1.1.23] S. P. Murarka and D. B. Fraser, "Silicide Formation in Thin Cosputtered (Titanium+Silicon) Polycrystalline Silicon and SiO2," J. Appl. Phys. 51, 350-356 (1980).
[1.1.24] M. Eizenberg, H. Foll, and K. N. Tu, "Formation of Shallow Schottky Contacts to Si Using Pt-Si and Pd-Si Alloy Films," J. Appl. Phys. 52, 861-868 (1981).
[1.1.25] J. O. Olowolafe, K. N. Tu, and J. Angilello. "Contact Reaction Between Si and Pd-W Alloy Films," J. Appl. Phys. 50, 6316-6320 (1979).
[1.1.26] M. Eizenburg, G. Ottaviani, and K. N. Tu, "Effect of Substrate Temperature on the Formation of Shallow Silicide Contacts on Si Using Pd-W and Pt-W Alloys," Appl. Phys. Lett. 37, 87-89 (1980).
[1.1.27] J. O. Olowolafe, M. A. Nicolet, and J. W. Mayer, "Formation Kinetics of CrSi2 Films on Si Substrates with and without Interposed Pd2Si layer," J. Appl. Phys. 47, 5182-5186 (l976).
[1.1.28] J. W. Mayer, S. S. Lau, and K. N. Tu, "Silicide Formation with Pd-V Alloys and Bilayers," J. Appl. Phys. 50, 5855-5859 (1979).
[1.1.29] K. N. Tu, W. N. Hammer, and J. O. Olowolafe, "Shallow Silicide Contact," J. Appl. Phys. 51, 1663-1668 (1980).
[1.1.30] H. Jshiwaru, T. Asano, and S. Furukawa, "Epitaxial Growth of Element Semiconductor Films onto Silicide/Si and Fluoride/Si Structures," J. Vac. Sci. Technol. B1, 266-271 (1983).
[1.1.31] K. L. Wang and G. P. Li, "A Proposed High-Frequency High-Power Silicon-Silicide Multilayered Device," IEEE Trans. Electron Device Lerr. EDL-4, 444-446 (1983).
[1.1.32] R. T. Tung, A. F. J. Levi, and J. M. Jibson, "Control of a Natural Permeable CoSi2 Base Transistor," Appl. Phys. Lett. 48, 635-637 (1986).
[1.1.33] F. A. d'Avitaya, "Si/CoSi2/Si Permeable Base Transistor Obtained by Silicon Molecular Beam Epitaxy over a CoSi2 Grating," Electronics Lett. 22, 699-700 (1986).
[1.1.34] K. Ishibashi and S. Furukawa, "SPE-CoSi2 Submicron Lines by lift-off Using Selective Reaction and its Application to a Permeable-Base Transistor," IEEE Trans. Electron Devices, ED-33, 322-327 (1986).
[1.1.35] K. Hikosaka, H. Ishiwara. and S. Furukawa, "Channeled Ion Implantation Through Metallic Films," J. Vac. Sci. Technol. 16, 1913-1916 (1979).
[1.1.36] T. R. Harrison, A. M. Johnson. P. K. Tien, and A. H. Dayem, "NiSi2-Si Infrared Schottky Photodetectors Grown by Molecular Beam Epitaxy," Appl. Phys. Lett. 41, 734-736 (1982).
[1.1.37] S. Saitoh, H. Ishiwara, T. Asano, and S. Furukawa, "Single Crystalline Silicide Formation," Jpn. J. Appl. Phys. 20, 1649-1656 (1981).
[1.1.38] U. Koster. P. S. Ho. and J. E. Lewis, "Material Reactions in Al/Pd2Si/Si Junctions. I. Phase Stability," J. Appl. Phys. 53, 7436-7444 (1982).
[1.1.39] R. T. Tung, J. M. Poate, J. C. Bean, S. M. Gibson. and D. C. Jacobson, "Epitaxial Silicides," Thin Solid Films, 93, 77-90 (1982).
[1.1.40] R. T. Tung, "Schottky-Barrier Formation at Single-Crystal Metal-Semiconductor Interfaces," Phys. Rev. Lett. 52, 461-464 (1984).
[1.1.41] T. Kawamura, D. Shinoda and H. Muta, "Oriented Growth of the Interfacial PtSi Layer or Between Pt and Si," Appl. Phys. Lett. 11, 101-103 (1967).
[1.1.42] W. D. Buckley and S. C. Moss, "Structure and Electrical Characteristics of Epitaxial Palladium Silicide Contacts on Single Crystal Silicon and Diffused p-n Diodes," Solid State Electron, 15, 1331-1337 (1972).
[1.1.43] G. J. van Gurp and C. Langereis, "Cobalt Silicide Layers on Si. I. Structure and Growth," J. Appl. Phys. 46. 4301-4307 (1975).
[1.1.44] H. C. Cheng, I. C. Wu, and L. J. Chen, "Growth of Single-Crystalline CoSi2 on (111)Si in Solid Phase Epitaxy Regime by a Non-ultrahigh Vacuum Method," Appl. Phys. Lett. 50, 174-176 (1987).
[1.1.45] C. S. Chang, C. W. Nieh. and L. J. Chen, "Partial Epitaxial Growth of HfSi2 Films Grown on Silicon," J. Appl. Phys. 61, 2393-2395 (1987).
[1.1.46] J. J. Chu, L. J. Chen, and K. N. Tu, "Localized Epitaxial Growth of ReSi2 on (111) and (001) Silicon," J. Appl. Phys. 62, 461-465 (1987).
[1.1.47] I. C. Wu, J. J. Chu, and L. J. Chen, "Localized Epitaxial Growth of TaSi2 on (111) and (001)Si by Rapid Thermal Annealing," J. Appl. Phys. 62, 879-884 (1987).
[1.2.1] R. B. Schwarz and W. L. Johnson, "Formation of an Amorphous Alloy by Solid-State Reaction of Pure Polycrystalline Metals," Phys. Rev. Lett. 51, 415-418 (1983).
[1.2.2] H. Schroder and K. Samwer, "Micromechanism for Metallic-Glass Formation by Solid-State Reactions," Phys. Rev. Lett. 54, 197-200 (1985).
[1.2.3] B. M. Clemens, W. L. Johnson, and R. B. Schwarz, "Amorphous Zirconium-Nickel Films Formed by Solid State Reactions," J. Non-Cryst. Solids, 61, 817-822 (1984).
[1.2.4] Ivo J. M. M. Raaijmakers, Alec H. Reader, and Piet H. Oosting, "The Formation of An Amorphous Silicide by Thermal Reaction of Sputter- Deposited Ti and Si Layers," J. Appl. Phys. 63, 2790-2795 (1988).
[1.2.5] W. Lur and L. J. Chen, "Growth Kinetics of Amorphous Interlayer Formed by Interdiffusion of Polycrystalline Ti Thin-Film and Single-Crystal Silicon," Appl. Phys. Lett. 54, 1217-1219 (1989).
[1.2.6] B. M. Clemens, "Solid-State Reaction And Structure in Compositionally Modulated Zirconium-Nickle and Titanium-Nickle Films," Phys. Rev. B 33, 7615-7624 (1986).
[1.2.7] R. W. Bene, "A Kinetic Model for Solid-State Silicide Nucleation," J. Appl. Phys. 61, 1826-1833 (1987).
[1.2.8] F. Y. Shiau, Ph. D. thesis, University of Wisconsin-Madison, 1990.
[1.2.9] W. J. Meng, C. W. Nieh, and W. L. Johnson, "Maximum Thickness of Amorphous NiZr Interlayers Formed by a Solid-State Reaction Technique," Appl. Phys. Lett. 51, 1693-1695 (1987).
[1.2.10] S. F. Gong and H. T. G. Hentzell, "Thermodynamic Investigations of Solid-State Si-Metal Interactions. II. General Analysis of Si-Metal Binary Systems," J. Appl. Phys. 68, 4542-4549 (1990).
[1.2.11] B. F. Dyson, T. R. Anthony, and D. Turnbull, "Interstitial Diffusion of Copper and Silver in Lead," J. Appl. Phys. 37, 2370-2374 (1966).
[1.2.12]A. R. Miedema, P. F. de Chatel, and F. R. de Boer, "Cohesion in Alloys-Fundamentals of a Semi-Empirical Model," Physica B, 100, 1-28 (1980).
[1.3.1] K. N. Tu, G. V. Chandrashekhar, and T. C. Thou, "Amorphous Alloy Formation by Solid State Reaction," Thin Solid Films, 163, 43-48 (1988).
[1.3.2] R. B. Schwarz and W. L. Johnson, "Formation of an Amorphous Alloy by Solid-State Reaction of Pure Polycrystalline Metals," Phys. Rev. Lett. 51, 415-418 (1983).
[1.3.3] A. R. Miedema, P. F. de Chatel, and F. R. de Boer, "Cohesion in Alloys-Fundamentals of a Semi-Empirical Model," Physica B, 100, 1-28 (1980).
[1.3.4] A. R. Miedema, R. Boom, and F. R. de Boer, "On the Heat of Formation of Solid Alloy," J. Less-Common Metals, 41, 283-298 (1975).
[1.3.5] A. R. Miedema, "On the Heat of Formation of Solid Alloy II," J. Less- Common Metal, 46, 67-83 (1976).
[1.3.6] R. Boom, F. R, de Boer, and A.R. Miedema, "On the Heat of Formation of Liquid Alloy II," J. Less-Common Metals, 46, 271-284 (1976).
[1.4.1] R. M. Wlaser and R. W. Bene, "First Phase Nucleation in Silicon-Transition-Metal Planar Interfaces," Appl. Phys. Lett. 28, 624-625 (1976).
[1.4.2] W. J. Chen and L. J. Chen, "Interfacial Reactions of Nickel Thin Films on BF2+-Implanted (001)Si," J. Appl. Phys. 70, 2628-2633 (1991).
[1.4.3] L. S. Hung and J. W. Mayer, "Thermal and Ion-Induced Dissociation of NiSi and NiSi2 in Contact with Nickel," Thin Solid Films, 109, 85-92 (1983)
[1.4.4] C. D. Lien, M. A. Nicolet, and S. S. Lau, "Kinetics of Silicides on Si<100> and Evaporated Silicon Substrates," Thin Solid Films, 143, 63-72 (1986)
[1.4.5] B. Y. Tsaur, S. S. Lau, J. W. Mayer, and M. A. Nicolet, "Sequence of Phase Formation in Planar Metal-Si Reaction Couples," Appl. Phys. Lett. 38, 922-924 (1981).
[1.4.6] L. J. Chen, C. M. Doland, I. W. Wu, J. J. Chu, and S. W. Lu, "The Effects of Implantation Impurities and Substrate Crystallinity on The Formation of NiSi2 on Silicon at 200-280 °C," J. Appl. Phys. 62, 2789-2792 (1987).
[1.4.7] S. W. Lu, C. W. Nieh, and L. J. Chen, "Epitaxial Growth of NiSi2 on Ion-Implanted Silicon at 250-280 °C," Appl. Phys. Lett. 49, 1770-1772 (1986).
[1.4.8] M. H. Wang and L. J. Chen, "Simultaneous Occurrence of Multiphases in the Interfacial Reactions of Ultrahigh Vacuum Deposited Ti Thin films on (111)Si," Appl. Phys. Lett. 59, 2460-2462 (1991).
[1.4.9] W. Y. Hsieh, J. H. Lin, and L. J. Chen, "Simultaneous Occurrence of Multiphases in the Interfacial Reactions of Ultrahigh Vacuum Deposited Hf and Cr Thin Films on (111)Si," Appl. Phys. Lett. 62, 1088-1090 (1991).
[1.4.10] T. L. lee and L. J. Chen, "Interfacial Reactions of Ultrahigh Vacuum Deposited Yttrium Thin Films on (111)Si at Low Temperatures," J. Appl. Phys. 73, 8258-8266 (1993).
[1.4.11] C. D. Lien and M. A. Nicolet, "Impurity Effects in Transition Metal Silicides," J. Vac. Sci. Technol. B2, 738-747 (1984).
[1.4.12] M. Wittmer, "Growth Kinetics of Platinum silicides," J. Appl. Phys. 54, 5081-5086 (1983).
[1.5.1] P. S. Ho, G. W. Rubloff, J. E. Lewis, V. Moruzzi and A. R. Williams, "Chemical Bonding and Electronic Structure of Pd2Si", Phys. Rev. B22, 4784-4790 (1980).
[1.5.2] P. J. Grunthaner, F. J. Grunthaner, and J. W. Mayer, "XPS Study of the Chemical Structure of the Nickel/Silicon Interface," J. Vac. Sci. Technol. 17, 924-929 (1980).
[1.5.3] A. Franciosi, D. J. Peterman, and J. H. Weaver, "Silicon-Refractory Metal Interfaces : Evidence of Room Temperature Intermixing for Si-Cr," J. Vac. Sci. Technol. 19, 657-660 (1981).
[1.5.4] M. A. Taubenblatt and C. R. Helms, "Silicide and Schottky Barrier Formation in the Ti-Si and The Ti-SiOx-Si Systems," J. Appl. Phys. 53, 6308-6315 (1982).
[1.5.5] A. Franciosi and J. H. Weaver, "Si-Metal Interface Reaction and Bulk Electronic Structure of Silicides," Physica 117B/118B, 846-847 (1983).
[1.5.6] R. Butz, G. W. Rubloff, T. Y. Tan, and P. S. Ho, "Chemical and Structural Aspects of Reaction at the Ti/Si Interface," Phys. Rev. B30, 5421-5429 (1984).
[1.6.1] E. Kasper, A. Schuh, G. Bauer, B. Hollaender, and H. Kibbel, “Test of Vegard's Law in Thin Epitaxial SiGe Layers," J. Cryst. Growth, 157, 68-72 (1995).
[1.6.2] E. A. Fitzgerald, Y. H. Xie, M. L. Green, D. Brasen, and A. R. Kortan, “Totally Relaxed GexSi1–x Layers with Low Threading Dislocation Densities Grown on Si Substrates," Appl. Phys. Lett. 59, 811-813 (1991).
[1.6.3] J. Tersoff et al, “Dislocations and Strain Relief in Compositionally Graded layers,” Appl. Phys. Lett. 62, 693-695 (1993).
[1.6.4] J. H. Li, C. S. Peng, Y. Wu, D. Y. Dai, J. M. Zhou, and Z. H. Mai, “Relaxed Si0.7Ge0.3 Layers Grown on Low-Temperature Si Buffers with Low Threading Dislocation Density,” Appl. Phys. Lett. 71, 3132-3134 (1997).
[1.6.5] E. Kasper, K. Lyutovich, M. Bauer, and M. Oehme, “New Virtual Substrate Concept for Vertical MOS Transistors,” Thin Solid Films, 336, 319-322 (1998).
[1.6.6] A. R. Powell, S. S. Iyer, and F. K. LeGoues, “New Approach to the Growth of Low Dislocation Relaxed SiGe Material,” Appl. Phys. Lett. 64, 1856-1858 (1994).
[1.6.7] C. Sheng, T. C. Zhou, Q. Cai, Dawei-Gong, M. R. Yu, X. J. Zhang, and X. Wang, “Suppression of Si-Ge Interfacial Vibration Mode in the Raman Spectrum of a Si6Ge4 Superlattice,” Phys. Rev. B 53, 10771-10774 (1996).
[1.6.8] Y. H. Phang, C. Teichert, M. G. Lagally, L. J. Peticolas, J. C. Bean, and E. Kasper, “Correlated-Interfacial-Roughness Anisotropy in Si1-xGex/Si Superlattices,” Phys. Rev. B 50, 14435-14445 (1994).
[1.6.9] J. Tersoff, Y. H. Phang, Z. Zhang, and M. G. Lagally, “Step-Bunching Instability of Vicinal Surfaces under Stress,” Phys. Rev. Lett. 75, 2730-2733 (1995).
[1.6.10] F. Liu, J. Tersoff, and M. G. Lagally, “Self-Organization of Steps in Growth of Strained Films on Vicinal Substrates,” Phys. Rev. Lett. 80, 1268-1271 (1998).
[1.6.11] P. Sutter and M. G. Lagally, “Embedding of Nanoscale 3D SiGe Islands in a Si Matrix,” Phys. Rev. Lett. 81, 3471-3474 (1998).
[1.6.12] R. M. Tromp, F. M. Ross, and M. C. Reuter, “Instability-Driven SiGe Island Growth,” Phys. Rev. Lett. 84, 4641-4644 (2000).
[1.6.13] C. Schelling, Springholz, and F. Schäffler, “Kinetic Growth Instabilities on Vicinal Si(001) Surfaces,” Phys. Rev. Lett. 83, 995-998 (1999).
[1.6.14] B. J. Spencer, P. W. Vorhees, and S. H. Davies, “Morphological Instability in Epitaxially Strained Dislocation-Free Solid Films: Linear Stability Theory,” J. Appl. Phys. 73, 4955-4970 (1993).
[1.6.15] C. W. Snyder, J. F. Mansfield, and B. G. Orr, “Kinetically Controlled Critical Thickness for Coherent Islanding and Thick Highly Strained Pseudomorphic Films of InxGa1-xAs on GaAs(100),” Phys. Rev. B 46, 9551-9554 (1992).
[1.6.16] J. Tersoff and F. K. LeGoues, “Competing Relaxation Mechanisms in Strained Layers,” Phys. Rev. Lett. 72, 3570-3573 (1994).
[1.6.17] S. A. Chaparro, J. Drucker, Y. Zhang, D. Chandrasekhar, M. R. McCartney, and D. J. Smith, “Strain-Driven Alloying in Ge/Si(100) Coherent Islands,” Phys. Rev. Lett. 83, 1199-1202 (1999).
[1.6.18] T. I. Kamins, G. Medeiros-Ribeiro, D. A. A. Ohlberg, and R. S. Williams, “Dome-to-Pyramid Transition Induced by Alloying of Ge Islands on Si(001),” Appl. Phys. A 67, 727-730 (1998).
[1.6.19] S. Christiansen, M. Albrecht, H. P. Strunk, and H. J. Maier, “Strained State of Ge(Si) Islands on Si: Finite Element Calculations and Comparison to Convergent Beam Electron-Diffraction Measurements,” Appl. Phys. Lett. 64, 3617-3619 (1994).
[1.6.20] J. H. Seok and J. Y. Kim, “Electronic Structure and Compositional Interdiffusion in Self-Assembled Ge Quantum Dots on Si(001),” Appl. Phys. Lett. 78, 3124-3126 (2001).
[1.6.21] P. Schittenhelm, M. Gail, J. Brunner, J. F. Nützel, and G. Abstreiter, “Photoluminescence Study of the Crossover from Two-Dimensional to Three-Dimensional Growth for Ge on Si(100),” Appl. Phys. Lett. 67, 1292-1294 (1995).
[1.6.22] Y. W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, “Kinetic Pathway in Stranski-Krastanov Growth of Ge on Si(001),” Phys. Rev. Lett. 65, 1020-1023 (1990).
[1.6.23] C. Lee and A. L. Barabasi, “Spatial Ordering of Islands Grown on Patterned Surfaces,” Appl. Phys. Lett. 73, 2651-2653 (1998).
[1.6.24] Y. Homma, P. Finnie, and T. Ogino, “Aligned Island Formation Using an Array of Step Bands and Holes on Si(111),” Appl. Phys. Lett. 74, 815-817 (1999).
[1.6.25]. G. Jin, J. L. Liu, S. G. Thomas, Y. H. Luo, K. L. Wang, and B. Y. Nguyen, “Controlled Arrangement of Self-Organized Ge Islands on Patterned Si (001) Substrates,” Appl. Phys. Lett. 75, 2752-2754 (1999).
[1.6.26] G. Jin, J. L. Liu, and K. L. Wang, “Regimented Placement of Self-Assembled Ge Dots on Selectively Grown Si Mesas,” Appl. Phys. Lett. 76, 3591-3593 (2000).
[1.6.27] T. S. Kuan and S. S. Iyer, “Strain Relaxation and Ordering in SiGe Layers Grown on (100), (111), and (110) Si Surfaces by Molecular-Beam Epitaxy,” Appl. Phys. Lett. 59, 2242-2244 (1991).
[1.6.28] Q. Xie, A. Madhukar, P. Chen, and N. P. Kobayashi, “Vertically Self-Organized InAs Quantum Box Islands on GaAs(100),” Phys. Rev. Lett. 75, 2542-2545 (1995).
[1.6.29] J. Tersoff, C. Teichert, and M. G. Lagally, “Self-Organization in Growth of Quantum Dot Superlattices,” Phys. Rev. Lett. 76, 1675-1678 (1996).
[1.6.30] O. G. Schmidt and K. Eberl, “Multiple Layers of Self-Asssembled Ge/Si Islands: Photoluminescence, Strain Fields, Material Interdiffusion, and Island Formation,” Phys. Rev. B 61, 13 721-13729 (2000).
[1.6.31] O. G. Schmidt, C. Lange, and K. Eberl, “Photoluminescence Study of the Initial Stages of Island Formation for Ge Pyramids/Domes and Hut Clusters on Si(001),” Appl. Phys. Lett. 75, 1905-1907 (1999).
Chapter 2
[2.1] T. T. Sheng and C. C. Chang, "Transmission Electron Microscopy of Cross-Section of Large Scale Integrated Circuits," IEEE Trans. Electron. Devices ED-23, 531-536 (1976).
Chapter 3
[3.1] M. E. Alperin, T. C. Hollaway, R. A. Haken, C. D. Gosmeyer, R. V. Karnaugh, and W. A. Parmantie, “Development of the Self-Aligned Titanium Silicide Process for VLSI Applications,” IEEE Trans. Electron Devices ED-32, 141-149 (1985).
[3.2] J. R. Abelson, K. B. Kim, D. E. Mercer, C. R. Helms, R. Sinclair, and T. W. Sigmon, “Disordered Intermixing at the Platinum:Silicon Interface Demonstrated by High-resolution Cross-sectional Transmission Electron Microscopy, Auger Electron Spectroscopy, and MeV Ion Channeling,” J. Appl. Phys. 63, 689-692 (1988).
[3.3] L. J. Chen, I. W. Wu, J. J. Chu, and C. W. Nieh, “Effects of Backsputtering and Amorphous Silicon Capping Layer on the Formation of TiSi2 in Sputtered Ti Films on (001)Si by Rapid Thermal Annealing,” J. Appl. Phys. 63, 2778-2782 (1988).
[3.4] A. E. Morgan, E. K. Boardbent, K. N. Ritz, D. K. Sadana, and B. J. Burrow, “Interactions of Thin Ti Films with Si, SiO2, Si3N4, and SiOxNy under Rapid Thermal Annealing,” J. Appl. Phys. 64, 344-353 (1988).
[3.5] W. Lur and L. J. Chen, “Growth Kinetics of Amorphous Interlayer Formed by Interdiffusion of Polycrystalline Ti Thin-Film and Single-Crystal Silicon,” Appl. Phys. Lett. 54, 1217-1219 (1989).
[3.6] J. Y. Cheng and L. J. Chen, “Growth Kinetics of Amorphous Interlayers by Solid-State Diffusion in Polycrystalline Zr and Hf Thin Films on (111)Si,” J. Appl. Phys. 68, 4002-4007 (1990).
[3.7] T. L. Lee and L. J. Chen, “Interfacial Reactions of Ultrahigh Vacuum Deposited Yttrium Thin Films on (111)Si at Low Temperatures,” J. Appl. Phys. 73, 8258-8266 (1993).
[3.8] L. J. Chen, “Solid State Amorphization in Metal/Si Systems,” Mater. Sci. Engineering R 29, 115-152 (2000).
[3.9] W. Y. Hsieh, J. H. Lin, and L. J. Chen, “Simultaneous Occurrence of Multiphases in the Interfacial Reactions of Ultrahigh Vacuum Deposited Hf and Cr Thin Films on (111)Si,” Appl. Phys. Lett. 62, 1088-1090 (1993).
[3.10] J. C. H. Spence, Experimental High Resolution Electron Microscopy, 2nd ed. (Oxford University Press, New York, 1988), p. 75.
[3.11] G. Y. Fan and J. M. Cowley, “Auto-Correlation Analysis of High Resolution Electron Micrographs of Near-Amorphous Thin Films,” Ultramicroscopy 17, 345-356 (1985).
[3.12] J. Frank, Computer Processing of Electron Microscope Images (Springer, Berlin, 1980) p. 187.
[3.13] M. H. Wang and L. J. Chen, “Phase Formation in the Interfacial Reactions of Ultrahigh Vacuum deposited Titanium Thin-films on (111) Si,” J. Appl. Phys. 71, 5918-5925 (1992).
[3.14] R. B. Schwarz and W. L. Johnson, “Formation of an Amorphous Alloy by Solid-State Reaction of Pure Polycrystalline Metals,” Phys. Rev. Lett. 51, 415-418 (1983).
[3.15] A. R. Miedema, P. F. de Chatel, and F. R. de Boer, “Cohesion in Alloys-Fundamentals of a Semi-Empirical Model,” Physica B 100, 1-28 (1980).
[3.16] I. J. M. M. Raaijmakers, P. H. Oosting and A. H. Reader, “a Solid State Amorphisation Reaction in Ti-Si Diffusion Couples: the Phase Field,” Mater. Res. Soc. Symp. Proc. 103, 229-233 (1988).
[3.17] T. Kouzaki, S. Ogawa, and S. Nakamura, “HREM and Nano-Scale Microanalysis of the Titanium-Silicon Interfacial Reaction,” Mater. Res. Soc. Symp. Proc. 183, 111-115 (1990).
[3.18] R. W. Bene, “A Kinetic Model for Solid-State Silicide Nucleation,” J. Appl. Phys. 61, 1826-1833 (1987).
[3.19] K. Holloway, P. Moine, J. Delage, R. Bormann, L. Capuano, and R. Sinclair, “Structure and Thermodynamics of Amorphous Ti-Si Produced by Solid-State Interdiffusion,” Mater. Res. Soc. Symp. Proc. 187, 71-76 (1990).
[3.20] E. Ma, L. A. Clevenger, C. V. Thompson, and K. N. Tu, “Kinetic and Thermodynamic Aspects of Phase Evolution in Ti/a-Si Multilayer Films,” Mater. Res. Soc. Symp. Proc. 187, 83-88 (1990).
[3.21] M. A. Nicolet and S. S. Lau, in Materials and Process Characterization, edited by N.G. Einspruch and G.R. Larrabee (Academic, New York, 1983) p. 329.
[3.22] J.W. Mayer and S.S. Lau, Electronic Materials Science: for Integrated Circuits in Si and GaAs (Macmillan, New York, 1990) p. 276.
[3.23] S. M. Chang, H. Y. Huang, H. Y. Yang, and L. J. Chen, “Mechanism of Enhanced Formation of C54–TiSi2 in High-Temperature Deposited Ti Thin Films on Preamorphized (001)Si,” Appl. Phys. Lett. 74, 224-226 (1999).
[3.24] M. Okihara, N. Hirashita, K. Tai, M. Kageyama, Y. Harada and H. Onoda, “Microstructural Study on the C49-to-C54 Phase Transformation in TiSi2 Formed from Preamorphization Implantation,” J. Appl. Phys. 85, 2988- (1999).
[3.25] C.C. Tan, L. Lu and A. See and L. Chan, “Effect of Degree of Amorphization of Si on the Formation of Titanium Silicide,” J. Appl. Phys. 91, 2842-2846 (2002).
[3.26] H. Inui, Hashimoto, K. Tanaka, I. Tanaka, T. Misoguchi, H. Adachi and M. Yamaguchi, “Defect and Electronic Structures in TiSi2 Thin Films Produced by Co-Sputtering: Part 1: Defect Analysis by Transmission Electron Microscopy,” Acta Mater. 49, 83-92 (2001).
[3.27] G. Ottaviani, T. Tonini, D. Giubertoni, A. Sabbadini, T. Marangon, G. Queirolo, F. La Via, “Investigation of C49–C54 TiSi Transformation Kinetics,” Microelec. Eng. 50, 153-158 (2000)
Chapter 4
[4.1] J. R. Abelson, K. B. Kim, D. E. Mercer, C. R. Helms, R. Sinclair and T. W. Sigmon, “Disordered Intermixing at the Platinum:silicon Interface Demonstrated by High-resolution Cross-Sectional Transmission Electron Microscopy, Auger Electron Spectroscopy, and MeV Ion Channeling,” J. Appl. Phys. 63, 689-692 (1988).
[4.2] L. J. Chen, I. W. Wu, J. J. Chu and C. W. Nieh, “Effects of Backsputtering and Amorphous Silicon Capping Layer on the Formation of TiSi2 in Sputtered Ti Films on (001)Si by Rapid Thermal Annealing,” J. Appl. Phys. 63, 2778-2782 (1988).
[4.3] M. H. Wang and L. J. Chen, “Phase Formation in the Interfacial Reactions of Ultrahigh Vacuum deposited Titanium Thin-films on (111) Si,” J. Appl. Phys. 71, 5918-5925 (1992).
[4.4] W. Lur and L. J. Chen, “Growth Kinetics of Amorphous Interlayer Formed by Interdiffusion of Polycrystalline Ti Thin-Film and Single-Crystal Silicon,” Appl. Phys. Lett. 54, 1217-1219 (1989).
[4.5] G. Y. Fan and J. M. Cowley, “Auto-Correlation Analysis of High Resolution Electron Micrographs of Near-Amorphous Thin Films,” Ultramicroscopy 17, 345-356 (1985).
[4.6] J. Frank, Computer Processing of Electron Microscope Images (Springer, Berlin, 1980) p. 187.
[4.7] C. C. Tan, L. Lu and A. See and L. Chan, “Effect of Degree of Amorphization of Si on the Formation of Titanium Silicide,” J. Appl. Phys. 91, 2842-2846 (2002).
[4.8] J. C. Chen, G. H. Shen and L. J. Chen, “the Determination of Dominant Diffusing Species in the Growth of Amorphous Interlayer between Gd and Si Thin Films by a Mo Cluster Marker Experiment,” J. Appl. Phys. 83, 7653-7657 (1998).
[4.9] L. J. Chen, “Solid State Amorphization in Metal/Si Systems,” Mater. Sci. and Eng. R 29, 115-152 (2000).
[4.10] E. Ma, L. A. Clevenger, C. V. Thompson, and K. N. Tu, “Kinetic and Thermodynamic Aspects of Phase Evolution in Ti/a-Si Multilayer Films,” Mater. Res. Soc. Symp. Proc. 187, 83-88 (1990).
[4.11] I. J. M. M. Raaijmakers, P. H. Oosting and A. H. Reader, “a Solid State Amorphisation Reaction in Ti-Si Diffusion Couples: The Phase Field,” Mater. Res. Soc. Symp. Proc. 103, 229-233 (1988).
[4.12] K. Holloway, P. Moine, J. Delage, R. Bormann, L. Capuano, and R. Sinclair, “Structure and Thermodynamics of Amorphous Ti-Si Produced by Solid-State Interdiffusion,” Mater. Res. Soc. Symp. Proc. 187, 71-76 (1990).
Chapter 5
[5.1] J. R. Abelson, K. B. Kim, D. E. Mercer, C. R. Helms, R. Sinclair and T. W. Sigmon, “Disordered Intermixing at the Platinum:silicon Interface Demonstrated by High-resolution Cross-Sectional Transmission Electron Microscopy, Auger Electron Spectroscopy, and MeV Ion Channeling,” J. Appl. Phys. 63, 689-692 (1988).
[5.2] L. J. Chen, I. W. Wu, J. J. Chu and C. W. Nieh, “Effects of Backsputtering and Amorphous Silicon Capping Layer on the Formation of TiSi2 in Sputtered Ti Films on (001)Si by Rapid Thermal Annealing,” J. Appl. Phys. 63, 2778-2782 (1988).
[5.3] M.H. Wang and L.J. Chen, “Phase Formation in the Interfacial Reactions of Ultrahigh Vacuum Deposited Titanium Thin-films on (111) Si,” J. Appl. Phys. 71, 5918-5925 (1992).
[5.4] W. Lur and L. J. Chen, “Growth Kinetics of Amorphous Interlayer Formed by Interdiffusion of Polycrystalline Ti Thin-Film and Single-Crystal Silicon,” Appl. Phys. Lett. 54, 1217-1219 (1989).
[5.5] G. Y. Fan and J. M. Cowley, “Auto-Correlation Analysis of High Resolution Electron Micrographs of Near-Amorphous Thin Films,” Ultramicroscopy 17, 345-356 (1985).
[5.6] J. Frank, Computer Processing of Electron Microscope Images (Springer, Berlin, 1980) p. 187.
[5.7] C. C. Tan, L. Lu, A. See and L. Chen, “Effect of Degree of Amorphization of Si on the Formation of Titanium Silicide,” Appl. Phys. Lett. 91, 2842-2846 (2002).
[5.8] J. M. Gibson and M. M. J. Treacy, “Diminished Medium-Range Order Observed in Annealed Amorphous Germanium,” Phys. Rev. Lett. 78, 1074-1077 (1997)
[5.9] S. L. Cheng, H. H. Lin, J. H. He, T. F. Chiang, C. H. Yu, L. J. Chen, C. K. Yang, D. Y. Wu, S. C. Chien, and W. C. Chen, “Evolution of Structural Order in Germanium Ion-Implanted Amorphous Silicon Layers,” J. Appl. Phys. 92, 910-913 (2002).
[5.10] J. C. Chen, G. H. Shen and L. J. Chen, “The Determination of Dominant Diffusing Species in the Growth of Amorphous Interlayer between Gd and Si Thin Films by a Mo Cluster Marker Experiment,” J. Appl. Phys. 83, 7653-7657 (1998).
[5.11] L. J. Chen, “Solid State Amorphization in Metal/Si Systems,” Mater. Sci. and Eng. R 29, 115-152 (2000).
[5.12] E. Ma, L. A. Clevenger, C. V. Thompson and K. N. Tu, “Kinetic and Thermodynamic Aspects of Phase Evolution in Ti/a-Si Multilayer Films,” Mater. Res. Soc. Symp. Proc. 187, 83-88 (1990).
[5.13] I. J. M. M. Raaijmakers, P. H. Oosting and A. H. Reader, “A Solid State Amorphisation Reaction in Ti-Si Diffusion Couples: The Phase Field,” Mater. Res. Soc. Symp. Proc. 103, 229-233 (1988).
[5.14] K. Holloway, P. Moine, J. Delage, R. Bormann, L. Capuano and R. Sinclair, “Structure and Thermodynamics of Amorphous Ti-Si Produced by Solid-State Interdiffusion,” Mater. Res. Soc. Symp. Proc. 187, 71-76 (1990).
Chapter 6
[6.1] F.M. Ross, P.A. Bennett, R.M. Tromp, J. Tersoff, and M. Reuter, “Growth Kinetics of CoSi2 and Ge Islands Observed with in Situ Transmission Electron Microscopy,” Micron 30, 21-32 (1999).
[6.2] Po-lin Chen and Cheng-Tzu Kuo, “Self-Organized Titanium Oxide Nanodot Arrays by Electrochemical Anodization,” Appl. Phys. Lett. 82, 2796-2798 (2003)
[6.3] T. Thurn-Albrecht, J. Schotter, G. A. Kästle, N. Emley, T. Shibauchi, L. rusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen and T. P. Russell, “Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates,” Science 290, 2126-2129 (2000).
[6.4] W. A. Lopes and H. M. Jaeger, “Hierarchical Self-Assembly of Metal Nanostructures on Diblock Copolymer Scaffolds,” Nature 414, 735-738 (2001).
[6.5] W. W. Wu, J. H. He, S. L. Cheng, S. W. Lee and L. J. Chen, “Self-Assembled NiSi Quantum-Dot Arrays on Epitaxial Si0.7Ge0.3 on (001)Si,” Appl. Phys. Lett. 83, 1836-1838 (2003)
[6.6] S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, “Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices,” Science 287, 1989-1992 (2000).
[6.7] S. Yu. Shiryaev, F. Jensen, J. L. Hansen, J. W. Petersen, and A. N. Larsen, “Nanoscale Structuring by Misfit Dislocations in SixGeySi Epitaxial Systems,” Phys. Rev. Lett. 78, 503-506 (1997).
[6.8] W. W. Wu, T. F. Chiang, S. L. Cheng, S. W. Lee, L. J. Chen, Y. H. Peng, and H. H. Cheng, “Enhanced Growth of CoSi2 on Epitaxial Si0.7Ge0.3 with a Sacrificial Amorphous Si Interlayer,” Appl. Phy. Lett. 81, 820-822 (2002).
[6.9] J. H. Zhu, K. Brunner, and G. Abstreiter, “Two-Dimensional Ordering of Self-Assembled Ge Islands on Vicinal Si(001) Surfaces with Regular Ripples,” Appl. Phys Lett. 73, 620-622 (1998).
[6.10] C. Teichert, J.C. Bean, and M.G. Lagally, “Self-Organized Nanostructures in Si1-xGex Films on Si(001),” Appl. Phys. A 67, 675-685 (1998).
[6.11] K. Brunner, “Si/Ge Nanostructures,” Rep. Prog. Phys. 65, 27-72 (2002).
[6.12] I Berbezier, A Tonda and A Portavoce, “SiGe Nanostructures: New Insights into Growth Processes,” J. Phys. Condens. Matter 14, 8283-8331 (2002)