簡易檢索 / 詳目顯示

研究生: 陳秀香
Chen, Hsiu-Hsiang
論文名稱: 低電壓電潤濕光學折光器之研究
Investigation of low operating voltage for electrowetting optical deflector
指導教授: 傅建中
Fu, Chien-Chung
口試委員: 傅建中
李裕正
顧逸霞
李昇憲
陳政寰
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 178
中文關鍵詞: 電濕潤低電壓光學折光器介電常數活性離子蝕刻石英微流道SU8光阻
外文關鍵詞: electrowetting, low voltage, optical deflector, dielectric constant, reactive ion etching, quartz, microfluidic channel, SU8 photoresist
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著光學和顯示技術的發展,可調變光學偏折器的需求正在增加。可調變光學偏折器在某些應用領域是必要的,例如: 光的方向控制、照明系統、汽車頭燈的掃描、條碼閱讀器,頭戴式顯示器和二維/三維顯示器。此外,可調變光學偏折器可應用在相機,使得在某特定的角度觀看、即時追蹤物體或補償手部的移動。傳統的光學偏折器需要使用到馬達而且體積過大。由於電濕潤光學偏折器具有低功耗(〜毫瓦),加上採用微機電系統(MEMS)技術,元件可以批量複製和減少尺寸大小。未來的光學元件需要與商業電子產品相容。然而目前的電濕潤元件的操作電壓約在數十伏特左右。因此發展低的操作電壓是未來的趨勢。
    本研究的目的是在探討不同的方法以實現低的操作電壓。首先,測試兩種含氟聚合物(Teflon®AF1600和Cytop®CTL-809M),用來確認厚度的影響和可潤濕性。第二,測試三種相同厚度的不同介電層(SiO2、Si3N4和Ta2O5),用來確認介電常數的影響。第三,測試三種不同的介面活性劑(sodium dodecyl sulfate (SDS)、Triton X100和Triton X15),用來確認界面表面張力的作用。第四,測試退火對高介電層(Ta2O5和Nb2O5)之介電常數的影響。
    在這篇論文中,提出一個電濕潤光學偏折器,用來檢測操作電壓和液體界面傾斜。結果顯示,分別經由高溫爐管在400℃和700℃氧氣氣氛下退火,可得到高介電常數的Nb2O5(25.5)和Ta2O5(18.8)。在此基礎上的結果,測試電濕潤光學偏折器的效能,並在此元件內填充水(含1% sodium dodecyl sulfate (SDS))和油(dodecane)。我們展示了在dodecane/water/Cytop®/Ta2O5 和dodecane/water/Cytop®/Nb2O5系統,水的液面傾斜變化高達70℃,而操作電壓只需11V和9 V。最後,展示了光束通過電濕潤光學偏折器的半月界面與切換頂點角度約±20o。
    玻璃基板是經常被應用在微流體通道製作,但它很難被乾刻蝕。在本研究中,我們提出最近在石英基板上製作微結構的研究。三種不同的蝕刻氣體混合物,即SF6/Ar、CF4/Ar和CHF3/Ar,與製程參數,如氬氣流量比、偏壓功率、ICP功率、腔室氣體壓力和氣體總流量作系統性研究。使用SU8光阻層作蝕刻遮罩層以取代金屬遮罩層以避免污染。我們發現,使用CF4/Ar和CHF3/Ar氣體混合物作為乾蝕刻介質時,SU8是一個很好的蝕刻遮罩層。並達到製作深度55μm以及幾乎垂直側壁(86o)的微流道通道。此研究所得到的製程數據,可提供將來研究石英乾式蝕刻的基本參考。


    As optics and displays technologies advance, the demand for variable optical deflector is increasing. Variable optical deflector is essential for such applications as beam steering, lighting systems, scanning head-light of cars, bar code readers, heads-up displays and two-dimensional/three-dimensional (2D/3D) display. Moreover, the variable optical deflector could be applied in the cameras to make looking under certain angle, follow objects instantly or compensate for hand moving. The traditional optical deflectors need to use the motor and the volume is too large. As the electrowetting optical deflector (EOD) is low power consumption (~ mW), together with using micro-electro-mechanical systems (MEMS) technology, the devices can be bulk replicating and size reducing. Future optical components need to be compatible with commercial electronics. However, the operating voltage for current electrowetting devices is about tens of volts. Therefore, the development of low operating voltage is the future trend.
    The goal of this study was to explore various approaches to achieving a low operating voltage. First, two kinds of fluoropolymers (Teflon®AF1600 and Cytop®CTL-809M) were utilized to confirm the thickness effect and wettability. Second, three different dielectric layers (SiO2, Si3N4, and Ta2O5) with the same thickness were tested to confirm the dielectric constant effect. Third, three different surfactants (sodium dodecyl sulfate (SDS), Triton X100, and Triton X15) were used to confirm the interfacial surface tension effect. Finally, the high dielectric layers (Ta2O5 and Nb2O5) were employed to test the annealing effect on the dielectric constant.
    In this dissertation, an EOD was proposed to test the operating voltage and liquid interface tilting. The results show that the high dielectric constants for Nb2O5 (25.5) and Ta2O5 (18.8) were achieved with annealing at 400℃ and 700℃ O2 ambiance in a conventional furnace, respectively. Based on this result, an EOD device filled with the water (containing 1% sodium dodecyl sulfate (SDS)) and dodecane was fabricated and tested. We demonstrate that the contact angle of water can change as much as 70° in dodecane/water/Cytop®/Ta2O5 system (with 11V) and dodecane/water/Cytop®/Nb2O5 system (with 9 V). Finally, the switchable apex angles of ~ ± 20° and deflection of a beam passing through the meniscus of the EOD are presented.
    Glass substrate is often applied in the microfluidic channels fabrication; however, it is hard to dry etching. In this research, we present our recent investigations on fabricating the microstructures on the quartz substrate. Three different etching gas mixtures, namely SF6/Ar, CF4/Ar and CHF3/Ar, with process parameters such as Ar flow ratio, bias power, ICP power, chamber gas pressure and gas total flow rate have been studied systematically. The SU-8 layer was applied as the mask layer instead of metal to avoid contamination. We found that the SU-8 is a good alternative mask material when the CF4/Ar and CHF3/Ar gas mixtures are selected as the dry etching media. Micro channel with a depth of 55 μm is fabricated, and a nearly vertical side-wall profile (86o) is achieved. The processed data gathered in this study may offer a good basic reference on the quartz dry etching for future investigation.

    中文摘要 i Abstract iii Acknowledgement v Figure caption xi Table caption xxiii List of symbols and equations xxv Chapter 1 Introduction 1 1.1. Overview 1 1.2. Actuation of an elecctrowetting optical deflector 7 Chapter 2 Experimental Procedures 12 2.1. Contact angle measurement on a water droplet 12 2.2. Contact angle measurement of inclined liquid surface on the two EOD sidewalls 15 2.3. Measurement of dielectric constant and surface morphologies 18 2.4. Light deflection experiment on an EOD device 19 Chapter 3 Fabrication of Samples 21 3.1. Preparation of amorphous fluoropolymers 21 3.2. Deposition of dielectric layer 26 3.3. Dielectric layers fabrication 26 3.4. EOD fabrication 29 Chapter 4 Results and discussion 30 4.1. Thickness dependence of contact angle change vs. differing fluoropolymers thicknesses 30 4.2. Dielectric constant dependence of contact angle change vs. differing dielectric layers 34 4.3. Surfactants dependence of contact angle change vs. different surfactants on the EOD device 37 4.4. The SEM and AFM surface morphology micrographs of the Ta2O5 and Nb2O5 dielectric films for as deposited and various N2 and O2 annealing temperatures. 50 4.4.1. Dielectric constant characteristics 50 4.4.2. Surface morphology features 51 4.4.3. Demonstration of EOD deflection 53 4.5. Demonstration of EOD deflection 78 Chapter 5 Investigation of the characteristics of the deep reactive ion etching on quartz using SU-8 as mask 80 5.1. Introduction 80 5.2. The Process 85 5.3. Results and Discussion 89 5.3.1. Etch rate versus chamber gas pressure 89 5.3.2. Etching rate versus argon flow rate 92 5.3.3. Etching rate versus total gas flow rate 93 5.3.4. Etching rate versus bias power 94 5.3.5. Etching rate versus ICP power 95 5.3.6. SEM images at SF6/Ar gas plasma dry etching 95 5.3.7. SEM images at CF4/Ar gas plasma dry etching 98 5.3.8. SEM images at CHF3/Ar gas plasma dry etching 102 5.4. Conclusions 105 Chapter 6 Conclusions and future Work 106 References 109 Appendix A. Thickness dependence of contact angle change versus differing dielectric layer thickness 123 A.1. Differing Teflon® fluoropolymer thickness 123 A.2. Differing Cytop® fluoropolymer thickness 126 A.3. Differing SiO2 thickness 130 A.4. Differing Si3N4 thickness 132 A.5. Differing Ta2O5 thickness 134 A.6. Differing TiO2 thickness 136 A.7. Differing SU8 thickness 139 Appendix B. EOD contact angle change versus differing surfactant 142 B.1. Structure: 949 Å CYTOP/ 200nm Si3N4/ Si, EOD: 26×3×18 mm3 142 B.1.1. Water phase: D.I. water; oil phase: dodecane 142 B.1.2. Water phase: 0.1 % Triton X100 + d.i. water; oil phase: dodecane 145 B.1.3. Water phase: 1 % SDS + d.i. water; oil phase: dodecane 147 B.1.4. Water phase: 1 % SDS + d.i. water; oil phase: 0.1% Triton x15 + dodecane 149 B.2. Structure: 949 Å CYTOP/ 200nm Ta2O5/ Si, EOD: 26×3×18 mm3 151 B.2.1. Water phase: d.i. water; oil phase: dodecane 151 B.2.2. Water phase: 0.1 % Triton X100 + d.i. water; oil phase: dodecane 156 B.2.3. Water phase: 1 % SDS+ d.i. water; oil phase: dodecane 160 B.2.4. Water phase: 1 % SDS+ d.i. water; oil phase: 0.1 % Triton x15 + dodecane 164 Appendix C The SEM and AFM surface morphology micrographs of the TiO2 dielectric films for as deposited and various N2 and O2 annealing temperatures. 168 Curriculum Vitae 177 Publication 178

    [1] Jackel J L, Hackwood S, and Beni G 1982 Electrowetting optical switch Applied Physics Letters 40 4-6.
    [2] Jackel J L, Hackwood S, Veselka J J, and Beni G 1983 Electrowetting switch for multimode optical fibers Appl. Opt. 22 1765-70.
    [3] Quilliet C and Berge B 2001 Electrowetting: a recent outbreak Current Opinion in Colloid & Interface Science 6 34-9.
    [4] Mugele F and Baret J 2005 Electrowetting: from basics to applications J. Phys.: Condens. Matter. 17 R705-74.
    [5] Kuiper S, Hendriks BHW, Hayes RA, Feenstra BJ and Baken JME 2005 Electrowetting-based optics Proc. SPIE 5908 R1-7.
    [6] Heikenfeld J 2008 Flat Electrowetting Optics and Displays Proc. SPIE Photonics West MOEMS 6887-6904
    [7] Heikenfeld J, Smith N, Dhindsa M, Zhou K, Kilaru M, Hou L, Zhang J, Kreit E and Raj B 2009 Recent progress in arrayed electrowetting optics OPN 20 20-6
    [8] Yang S, Zhou K, Kreit E, Heikenfeld J 2010 High reflectivity electrofluidic pixels with zero-power grayscale operation Appl. Phys. Letters 97 143501.
    [9] Lippmann G 1875 Relations entre les phénomènes electriques et capillaires Annales de Chimie et de Physique 5 494-549
    [10] Berge B 1993 Electrocapillarite et mouillage de films isolants par l’eau Comptes Rendus Des Séances De L'Académie Des Sciences 317 157-63
    [11] Berge B and Peseux J 2000 Variable focal lens controlled by an external voltage: An application of electrowetting The European Physical Journal E 3 159-63.
    [12] Krupenkin T, Yang S and Mach P 2003 Tunable liquid microlens Appl. Phys. Lett. 82 316
    [13] Yang S, Krupenkin TN, Mach P and Chandross E A 2003 Tunable and latchable liquid microlens with photopolymerizable components Adv. Mater. 15 940
    [14] Kuiper S and Hendriks BHW 2004 Variable-focus liquid lens for miniature cameras Appl. Phys. Lett. 85 1128-30.
    [15] Beni G and Tenan MA 1981 Dynamics of electrowetting displays J. Appl. Phys. 52 6011-5.
    [16] Hayes RA, Feenstra BJ 2003 Video-speed electronic paper based on electrowetting Nature 425 383-5.
    [17] Roques-Carmes T, Hayes RA, Feenstra BJ and Schlangen LJ 2004 Liquid behaviour inside a reflective display pixel based on electrowetting J. Appl. Phys. 95 4389.
    [18] Roques-Carmes T, Hayes RA and Schlangen LJM 2004 A physical model describing the electro-optic behavior of switchable optical elements based on electrowetting J. Appl. Phys. 96 6267-71.
    [19] Heikenfeld J and Steckl A J 2005 High-transmission electrowetting light valves Appl. Phys. Lett. 86 151121.
    [20] Roques-Carmes T, Palmier S, Hayes R A and Schlangen L J M 2005 The effect of the oil/water interfacial tension on electrowetting driven fluid motion Colloids Surf. A 267 56-63.
    [21] Lao Y, Sun B, Zhou K, and Heikenfeld J 2008 Ultra-high transmission electrowetting displays enabled by integrated reflectors J. Disp. Technol. 4 120-2.
    [22] Zhou K, Heikenfeld J, Dean K A, Howard E M, and Johnson M R 2009 A full description of a simple and scalable fabrication process for electrowetting display J. Micromech. Microeng. 19 065029.
    [23] Pollack M G, Fair R B, and Shenderov A D 2000 Electrowetting-based actuation of liquid droplets for microfluidic applications Appl. Phys. Lett. 77 1725-6.
    [24] Prins M W J, Welters W J J and Weekamp J W 2001 Fluid control in multichannel structures by electrocapillary pressure Science 291 277-80.
    [25] Fowler J, Moon H and Kim C J 2002 Enhancement of mixing by droplet based microfluidics IEEE Int. Conf. MEMS (Las Vegas: IEEE) 97-100.
    [26] Pollack M G, Shenderov A D and Fair R B 2002 Electrowetting-based actuation of droplets for integrated microfluidics Lab on a Chip 2 96-101.
    [27] Paik P, Pamula V K and Fair R B 2003 Rapid droplet mixers for digital microfluidic systems Lab on a Chip 3 253-9.
    [28] Paik P, Pamula V K, Pollack M G and Fair R B 2003 Electrowetting-based droplet mixers for microfluidic systems Lab on a Chip 3 28-33.
    [29] Fouillet Y and Achard J L 2004 Digital microfluidic and biotechnology C. R. Phys. 5 577-88.
    [30] Moon H, Wheeler A R, Garrell R L, Loo J A, and Kim C J 2006 An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS Lab on a Chip 6 1213-9.
    [31] Fair R B 2007 Digital microfluidics: is a true lab-on-a-chip possible? Microfluidics and Nanofluidics 3, 245-81.
    [32] Barbulovic-Nad I, Yang H, Philip S, and Wheeler A R, 2008 Digital Microfluidics for cell based assays Lab on a Chip 4 519-26.
    [33] Heikenfeld J, Smith N, Abeysinghe D, Steckl A J and Haus JW 2006 Flat electrowetting optics IEEE LEOS Newsletter 20 4-10.
    [34] Smith N R, Abeysinghe D C, Haus J W and Heikenfeld J 2006 Agile wide-angle beam steering with electrowetting microprisms Optics Express 14 6557-63.
    [35] Hou L, Smith N, and Heikenfeld J 2007 Electrowetting modulation of any flat optical film Appl. Phys. Lett. 90 251114.
    [36] Han W, Haus J W, Heikenfeld J, Smith N, and McManamon P 2009 Electrowetting Beam Steering using microprism array designs SPIE 7339 17.
    [37] Smith N R 2009 Investigation of the Performance Potential for Arrayed Electrowetting Microprisms Dissertation 1-216.
    [38] Han W, Haus J W, McManamon P, Heikenfeld J, Smith N R, and Yang J 2010 Transmissive beam steering through electrowetting microprism arrays Optics Communications 283 1174-81.
    [39] Hou L, Zhang J, Smith N, Yang J and Heikenfeld J 2010 A full description of a scalable microfabrication process for arrayed electrowetting microprisms J. Micromech. Microeng. 20 015044.
    [40] Bart D B, Freek S, Mischa M, Szabolcs D, and Stein K 2010 Control of an electrowetting based beam deflector J. of Appl. Phys. 107 063101.
    [41] Vallet M, Berge B, Vovelle L 1996 Electrowetting of water and aqueous solution on poly(ethylene terephthalate) insulating films Polymer 37 2465-70.
    [42] Verheijen H J J and Prins M W J 1999 Reversible electrowetting and trapping of charge: model and experiments Langmuir 15 6616-20.
    [43] Pollack M G and Fair R B 2000 Electrowetting-based actuation of liquid droplets for microfluidic applications Appl. Phys. Lett. 77 1725-6.
    [44] Seyrat E and Hayes R 2001 Amorphous fluoropolymers as insulators for reversible low-voltage electrowetting J. Appl. Phys. 90 1383-6.
    [45] Paik P, Pamula VK, Pollack MG and Fair RB 2003 Electrowetting-based droplet mixers for microfluidic systems Lab on a Chip 3 28-33.
    [46] Takei A, Iwase E, Hoshino K, Matsumoto K and Shimoyama I 2007 Angle tunable liquid wedge prism driven by electrowetting J. of Microelectromechanical Systems 16 1537-42.
    [47] Moon H, Cho S, Garrrell R, and Kim C 2002 Low voltage electrowetting-on-dielectric J. of Appl. Phys. 92 4080–7.
    [48] Berry S, Kedzierski J and Abedian B 2006 Low voltage electrowetting using thin fluoroploymer films J. of Colloid and Interface Science 303 517-24.
    [49] Raccurt O, Berthier J , Clementz P, Borella M, and Plissonnier M 2007 On the influence of surfactants in electrowetting systems J. Micromech. Microeng. 17 2217-23.
    [50] Banpurkar A G, Nichols K P, and Mugele F 2008 Electrowetting based microdrop tensiometer Langmuir 24 10549-51.
    [51] Roques-Carmes T, Gigante A, Commenge J M, and Corbel S 2009 Use of surfactants to reduce the driving voltage of switchable optical elements based on electrowetting Langmuir 24 10549-51.
    [52] Raj B, Smith N R, Christy L, Dhindsa M, and Heikenfeld J 2008 Composite dielectrics and surfactants for low voltage electrowetting devices IEEE University/Government/Industry Micro/Nano Symposium 187-90.
    [53] Li Y, Parkes W, Haworth L I, Stokes A A, Muir K R, Li P, Collin A J, Hutcheon N G, Henderson R, Rae B, and Walton A J 2008 Anodic Ta2O5 for CMOS compatible low voltage electrowetting- on-dielectric device fabrication Solid-State Electronics, 52 1382-7.
    [54] Zhang J, Van Meter D, Hou L, Smith N R, Yang J, Stalcup A, Laughlin R and Heikenfeld J 2009 Preparation and analysis of 1-Chloronaphthalene for highly refractive electrowetting optics Langmuir 25 10413-6.
    [55] Banpurkar A G, Nichols K P and Mugele F 2008 Electrowetting-based microdrop tensiometer Langmuir 24 10549-51.
    [56] Raj B, Dhindsa M, Smith N R, Laughlin R, and Heikenfeld J 2009 Ion and liquid dependent dielectric failure in electrowetting systems Langmuir 25 12387-92.
    [57] Chang J H, Choi D Y, Han S and Pak J J 2009 Driving characteristics of the electrowetting-on-dielectric device using atomic-layer-deposited aluminum oxide as the dielectric Microfluidics and Nanofluidics 8 269–73
    [58] Park Y B, Li X D, Nam G J, and Rhee S W 1999 Effects of annealing in O2 and N2 on the microstructure of metal organic chemical vapor deposition Ta2O5 film and the interfacial SiO2 layer J. of Materials Science: Materials in Electronics 10 113-9.
    [59] Murarka S P 2003 in Interlayer Dielectrics for Semiconductor Technologies, ed. Murarka S P, Eizenberg M, and Sinha A K (Elsevier Amsterdam) Chap. 2.
    [60] Joshi P C and Cole M V 1999 Influence of postdeposition annealing on the enhanced structural and electrical properties of amorphous and crystalline Ta2O5 thin films for dynamic random access memory applications J. Appl. Phys. 86 871-80
    [61] Masse J P, Szymanowski H, Zabeida O, Amassian A, Klemberg-Sapieha J E and Martinu L 2006 Stability and effect of annealing on the optical properties of plasma-deposited Ta2O5 and Nb2O5 films Thin Solid Films 515 1674–82
    [62] Shinriki S, Nishioka Y, Ohji Y and Mukai K 1989 Oxidized Ta2O5/Si3N4 dielectric films on poly-crystalline Si for dRAMs IEEE Trans. Electron Devices 36 328–32
    [63] Nanayakkara Y S, Perera S, Bindiganavale S, WanigasekaraE, Moon H and Armstrong D W 2010 The effect of AC frequency on the electrowetting behavior of ionic liquids Anal. Chem. 82 3146-54
    [64] Verheijen H J I and Prins M W J 1999 Reversible electrowetting and trapping of charge: model and experiments Langmuir 15 6616-20
    [65] Chen H and Fu C 2011 Low voltage electrowetting optical deflector Jpn. J. Appl. Phys. (accepted)
    [66] Vegvari A and Hjerten S 2002 A hybrid micro device for electrophoresis and electrochromatography using UV detection Electrophoresis 23(20) 3479–86.
    [67] Petersen N J, Mogensen K B, and Kutter J P 2002 Performance of an in-plane detection cell with integrated waveguides for UV/Vis absorbance measurements on microfluidic separation devices Electrophoresis 23(20), 3528–36.
    [68] Mogensen K B, Eriksson F, Gustafsson O, Nikolajsen R P H, and Kutter J P 2004 Pure-silica optical waveguides, fiber couplers, and high-aspect ratio submicrometer channels for electrokinetic separation devices Electrophoresis 25(21-22) 3788–95.
    [69] Hsiung S K, Lin C H, and Lee G B 2005 A microfabricated capillary electrophoresis with multiple buried optical fibers and microfocusing lens for multi wavelength detection Electrophoresis 26 1122–9.
    [70] Jacobson S C, Hergenriider R, Koutny L B, and Ramsey J M 1994 Open channel electrochromatography on a microchip Anal. Chem. 66 2369–73.
    [71] Lin C H, Lee G B, Fu L M, and Chen S H 2004 Integrated optical-fiber capillary electrophoresis microchips with novel spin-on-glass surface modification Biosensors and Bioelectronics 20(1), 83-90.
    [72] Lin C H, Lee G B, Lin Y H, and Chang G L 2001 A fast prototyping process for fabrication of microfluidic systems on soda-lime glass J. Micromechanic Microengineering 11(6) 726-32.
    [73] http://www.escoproducts.com/html/material_data.html
    [74] Grosse A, Grewe M, and Fouckhardt H 2001 Deep wet etching of fused silica glass for hollow capillary optical leaky waveguides in microfluidic devices J. Micromechanic Microengineering 11(3) 257–262.
    [75] Ceriotti L, Weible K, de Rooij N F, and Verpoorte E 2003 Rectangular channels for lab-on-a-chip applications Microelectronic engineering 67-68 865-71.
    [76] Ceriotti L, Verpoorte E, Weible K, de Rooij N F 2001 High aspect ratio channels for capillary electrophoresis The 11th International Conference on Solid-State Sensors and Actuators 2, 1174-7.
    [77] Li X, Abe T, and Esashi M 2001 Deep reactive ion etching of pyrex glass using SF6 plasma Sensors and Actuators A 87 139-45.
    [78] Li X, T Abe, and Esashi M 2000 Deep reactive ion etching of Pyrex glass”, Micro Electro Mechanical Systems 23-27 271– 6.
    [79] Li X, Abe T, Liu Y, and Esashi M 2002 Fabrication of high-density electrical feed-throughs by deep-reactive-ion etching of pyrex glass J. of Microelectromechanical systems 11(6) 625-30.
    [80] Li L, Abe T, Esashi M 2003 Smooth surface glass etching by deep reactive ion etching with SF6 and Xe gases J. Vac. Sci. Technol. B 21(6) 2545-9.
    [81] Lin Y C, T Ono, and Esashi M 2005 Fabrication and characterization of micromachined quartz-crystal cantilever for force sensing J. Micromechanic Microengineering 15 2426–32.
    [82] Ujiie T, Kikuchi T, Ichiki T, and Horiike Y 2000 Fabrication of fused silica microcapillary electrophoresis chips using plasma etching Jpn. J. Appl. Phys 39 3677-82.
    [83] Ichiki T, Sugiyama Y, Taura R, Koidesawa T, and Horiike Y 2003 Plasma applications for biochip technology Thin Solid Films 435 62-8.
    [84] Chang D T, Stratton F P, Kubena R L, and Joyce R J 2003 Optimized DRIE etching of ultra-small quartz resonators Proceedings of the 2003 IEEE International Frequency Control Symposium and PDA Exhibition 829-32.
    [85] Chen H H and Fu C 2006 Photoresist mask for quartz RIE in microfluidic channel The 12th Microoptics Conference 11-14 112-3.
    [86] Pang L, Nezhad M, Levy U, Tsai C H, and Fainman Y 2005 Form-birefringence structure fabrication in GaAs by use of SU-8 as a dry-etching mask Applied Optics 44(12) 2377-81.
    [87] Fukasawa T and Horike Y 2003 Deep dry etching of quartz plate over 100μm in depth employing ultra-thick photoresist (SU-8) Japan J. Appl. Phys. 42 3702–6.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE