簡易檢索 / 詳目顯示

研究生: 許彥平
Hsu, Yen-Ping
論文名稱: 利用化學流體沉積法所製備之雙金屬觸媒於水中進行氫化反應
Synthesis of Bimetallic Catalyst by Chemical Fluid Deposition for Hydrogenations in Aqueous Solution
指導教授: 談駿嵩
口試委員: 李明哲
吳榮宗
凌永健
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 54
中文關鍵詞: 化學流體沉積Rh-Pt雙金屬超臨界二氧化碳對苯二甲酸氫化反應塑化劑鄰苯二甲酸酯
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分為三部份:第一部份是利用化學流體沉積法製備雙金屬Rh-Pt/SBA-15合金觸媒,其是使用超臨界CO2溶解乙醯丙酮鉑及乙醯丙酮銠,挾帶此金屬前驅物進入中孔洞矽基材SBA-15孔道內,再通入氫氣還原金屬前驅物形成雙金屬奈米粒子,所製備之觸媒透過EDS、廣角度及小角度XRD、TEM及XPS等儀器鑑定,以獲得觸媒金屬含量、顆粒大小、合金結構、孔徑大小及比表面積等性質;第二部分則是利用上述製備之Rh-Pt/SBA-15雙金屬觸媒於水中進行對苯二甲酸及其衍生物之苯環氫化反應。實驗結果發現,Rh/SBA-15於對苯二甲酸氫化反應僅有24.2%的轉化率,Pt/SBA-15則不反應,但若以Rh70Pt30/SBA-15雙金屬觸媒進行催化反應時,同樣反應兩小時可達到74.3%的高轉化率,反應時間四小時後轉化率達99.6%。當Rh-Pt/SBA-15雙金屬觸媒在進行苯環氫化時,Pt金屬會先吸附反應物之苯環,而後Rh金屬接續進行苯環的氫化反應,故Rh-Pt雙金屬在對芳香烴類化合物的苯環氫化反應具有顯著的加成效應(Synergistic Effect)。第三部分針對鄰苯二甲酸酯及其衍生物之氫化反應進行研究,由實驗結果發現,使用Rh/C觸媒可以直接進行鄰苯二甲酸酯的氫化反應,不須額外添加溶劑,且觸媒對苯環氫化的選擇性極高,反應過程中沒有副產物生成,未來可開發此氫化反應系統,以生產對人體無害之塑化劑。本研究已成功利用所開發之雙金屬觸媒搭配水溶劑進行反應,可應用於工業上芳香烴類苯環氫化反應,達到永續及綠色化學之目的,未來更希望應用於氫化鄰苯二甲酸酯,以開發無毒之塑化劑。


    摘要 I Abstract II 致謝辭 IV 圖目錄 VII 表目錄 IX 第一章、緒論 1 第二章、超臨界流體應用於非均相觸媒之氫化反應 7 2-1前言與研究目的 7 2-2文獻回顧 8 2-2-1化學流體沉積法製備奈米觸媒 8 2-2-2對苯二甲酸氫化反應相關文獻 16 2-2-3鄰苯二甲酸酯氫化反應相關文獻 19 第三章、實驗方法 22 3-1實驗藥品與儀器 22 3-2實驗裝置與步驟 24 3-2-1製備奈米金屬觸媒 24 3-2-2 TPA、DMP與DOP之氫化反應 25 3-2-3製備SBA-15 25 3-3檢測儀器 26 3-3-1穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 26 3-3-2能量分散光譜儀(Energy Dispersive Spectrometer, EDS) 26 3-3-3氣相層析儀(Gas Chromatography) 27 3-3-4核磁共振波譜儀(Nuclea Magnetic Resonance Spectrometer, NMR) 27 3-3-5 X-ray粉末繞射儀(X-ray Diffraction Spectrometer, XRD) 28 3-3-6 X-ray光電子能譜儀(X-ray Photoelectron Spectroscope, XPS) 29 第四章、實驗結果與討論 30 4-1 TPA與其衍生物苯環氫化反應 30 4-1-1 RhxPty/SBA-15奈米金屬觸媒之XRD分析 30 4-1-2 RhxPty/SBA-15奈米金屬觸媒之EDS分析 32 4-1-3 RhxPty/SBA-15奈米金屬觸媒之TEM鑑定 33 4-1-4 RhxPty/SBA-15奈米金屬觸媒之XPS分析 34 4-1-5利用RhxPty/SBA-15觸媒於水中進行TPA與其衍生物苯環氫化反應 37 4-2鄰苯二甲酸酯與其衍生物苯環氫化反應 41 4-2-1鄰苯二甲酸酯苯環氫化反應之GC-MS鑑定 42 4-2-2鄰苯二甲酸酯苯環氫化反應之Rh、Ru、Pt與Pd金屬觸媒比較 43 4-2-3鄰苯二甲酸酯於不同溶劑中進行苯環氫化反應 44 4-2-4進行鄰苯二甲酸之氫化反應測試 46 第五章、結論與建議 48 5-1 TPA氫化反應 48 5-2 DMP與DOP氫化反應 48 5-3後續發展建議 49 第六章、參考文獻 50

    Abu Bakar, N.H.H., Bettahar, M.M., Abu Bakar, M., Monteverdi, S., Ismail, J., 2010. Low Temperature Activation of Pt/Ni Supported MCM-41 Catalysts for Hydrogenation of Benzene. Journal of Molecular Catalysis A: Chemical 333, 11-19.
    Arai, Y., Sako, T., Takebayashi, Y., 2002. Supercritical Fluids: Molecular Interactions, Physical Properties, and New Applications. Springer.
    Arpe, H.J., 2010. Industrial Organic Chemistry, Fifth ed. Wiley-VCH, Weinheim, Germany.
    Balashova, I.M., Meco, E., Danner, R.P., 2014. Diffusion and Solubility of Hazardous Compounds in Polyvinyl Chloride. Fluid Phase Equilibria 366, 69-73.
    Barbaro, P., Bianchini, C., Dal Santo, V., Meli, A., Moneti, S., Psaro, R., Scaffidi, A., Sordelli, L., Vizza, F., 2006. Hydrogenation of Arenes over Silica-Supported Catalysts That Combine a Grafted Rhodium Complex and Palladium Nanoparticles:  Evidence for Substrate Activation on Rhsingle-Site−Pdmetal Moieties. Journal of the American Chemical Society 128, 7065-7076.
    Boettcher, A., Breitscheidel, B., Brunner, M., Halbritter, K., Henkelmann, J., Pinkos, R., Thil, L., 1999. Method for Hydrogenating Benzene Polycarboxylic Acids or Derivatives Thereof by Using a Catalyst Containing Macropores. BASF Aktiengesellschaft. WO Patent 1999032427.
    Bohnen, H., Klein, T., Bergrath, K., 2004. Process for Preparing Cyclohexanedicarboxylic Esters. Celanese Chemicals Europe GmbH. US Patent 6740773.
    Cai, S., Duan, H., Rong, H., Wang, D., Li, L., He, W., Li, Y., 2013. Highly Active and Selective Catalysis of Bimetallic Rh3Ni1 Nanoparticles in the Hydrogenation of Nitroarenes. ACS Catalysis 3, 608-612.
    Chang, H.K., Lee, C.H., Wu, K.C., Hsu, H.Y., 2013. Process for Hydrogenation of Polycarboxylic Acids or Derivatives Therof. Industrial Technology Research Institute. US Patent 20130150614.
    Chatterjee, M., Ikushima, Y., Hakuta, Y., Kawanami, H., 2006. In Situ Synthesis of Gold Nanoparticles inside the Pores of MCM-48 in Supercritical Carbon Dioxide and Its Catalytic Application. Advanced Synthesis & Catalysis 348, 1580-1590.
    Dehm, N.A., Zhang, X., Buriak, J.M., 2010. Screening of Bimetallic Heterogeneous Nanoparticle Catalysts for Arene Hydrogenation Activity under Ambient Conditions. Inorganic Chemistry 49, 2706-2714.
    Dhepe, P.L., Fukuoka, A., Ichikawa, M., 2003. Novel Fabrication and Catalysis of Nano-Structured Rh and RhPt Alloy Particles Occluded in Ordered Mesoporous Silica Templates Using Supercritical Carbon Dioxide. Physical Chemistry Chemical Physics 5, 5565-5573.
    Erkey, C., 2009. Preparation of Metallic Supported Nanoparticles and Films Using Supercritical Fluid Deposition. The Journal of Supercritical Fluids 47, 517-522.
    Greenfield, H., 1973. Studies in Nuclear Hydrogenation. Annals of the New York Academy of Sciences 214, 233-242.
    Huang, C.H., Klinthong, W., Tan, C.S., 2013. SBA-15 Grafted with 3-Aminopropyl Triethoxysilane in Supercritical Propane for CO2 Capture. The Journal of Supercritical Fluids 77, 117-126.
    Lekhal, A., Glasser, B.J., Khinast, J.G., 2001. Impact of Drying on the Catalyst Profile in Supported Impregnation Catalysts. Chemical Engineering Science 56, 4473-4487.
    Lin, H.W., Yen, C.H., Tan, C.-S., 2012. Aromatic Hydrogenation of Benzyl Alcohol and Its Derivatives Using Compressed CO2/Water as the Solvent. Green Chemistry 14, 682-687.
    Machida, H., Kedo, K., Zaima, F., 2003. Process for Producing a Hydrogenation Product of an Aromatic Carboxylic Acid. US Patent 6,541,662.
    Maegawa, T., Akashi, A., Yaguchi, K., Iwasaki, Y., Shigetsura, M., Monguchi, Y., Sajiki, H., 2009. Efficient and Practical Arene Hydrogenation by Heterogeneous Catalysts under Mild Conditions. Chemistry – A European Journal 15, 6953-6963.
    Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D., 1992. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data. Physical Electronics Division, Perkin-Elmer Corporation.
    O'Neil, M.J., 2001. The Merck Index : An Encyclopedia of Chemicals, Drugs, and Biologicals. Merck, Whitehouse Station, N.J.
    Pan, H.B., Wai, C.M., 2011. Facile Sonochemical Synthesis of Carbon Nanotube-Supported Bimetallic Pt-Rh Nanoparticles for Room Temperature Hydrogenation of Arenes. New Journal of Chemistry 35, 1649-1660.
    Rahman, M., Brazel, C.S., 2004. The Plasticizer Market: An Assessment of Traditional Plasticizers and Research Trends to Meet New Challenges. Progress in Polymer Science 29, 1223-1248.
    Stales, C.A., Peterson, D.R., Parkerton, T.F., Adams, W.J., 1997. The Environmental Fate of Phthalate Esters: A Literature Review. Chemosphere 35, 667-749.
    Stanley, J.N.G., Heinroth, F., Weber, C.C., Masters, A.F., Maschmeyer, T., 2013. Robust Bimetallic Pt–Ru Catalysts for the Rapid Hydrogenation of Toluene and Tetralin at Ambient Temperature and Pressure. Applied Catalysis A: General 454, 46-52.
    Tanaka, T., Kasai, A., 2006. Polyester Resin, Polyester Resin Composition, and Sheet, Film and Hollow Molded Container Obtained Therefrom. US Patent 7,048,978.
    Tateno, Y., Sano, T., Tanaka, K., Magara, M., Okamoto, N., Kato, K., 1994. JP Patent 06-184041.
    Van Der Grift, C.J.G., Wielers, A.F.H., Mulder, A., Geus, J.W., 1990. The Reduction Behaviour of Silica-Supported Copper Catalysts Prepared by Deposition-Precipitation. Thermochimica Acta 171, 95-113.
    Wang, D., Li, Y., 2011. Bimetallic Nanocrystals: Liquid-Phase Synthesis and Catalytic Applications. Advanced Materials 23, 1044-1060.
    Wilkes, C.E., Summers, J.W., Daniels, C.A., Berard, M.T., 2005. PVC Handbook. Hanser Fachbuchverlag.
    Yoda, S., Mizuno, Y., Furuya, T., Takebayashi, Y., Otake, K., Tsuji, T., Hiaki, T., 2008. Solubility Measurements of Noble Metal Acetylacetonates in Supercritical Carbon Dioxide by High Performance Liquid Chromatography (HPLC). The Journal of Supercritical Fluids 44, 139-147.
    Yoon, B., Pan, H.B., Wai, C.M., 2009. Relative Catalytic Activities of Carbon Nanotube-Supported Metallic Nanoparticles for Room-Temperature Hydrogenation of Benzene. The Journal of Physical Chemistry C 113, 1520-1525.
    Zhang, Y., Erkey, C., 2006. Preparation of Supported Metallic Nanoparticles Using Supercritical Fluids: A Review. The Journal of Supercritical Fluids 38, 252-267.
    Zhao, J., Xue, M., Huang, Y., Shen, J., 2011. Hydrogenation of Dioctyl Phthalate over Supported Ni Catalysts. Catalysis Communications 16, 30-34.
    丁雲傑, 刁成際, 林培滋, 馬立新, 2009. 一種制1, 2-環己烷二甲酸二元酯的催化劑. 中國科學院大連化學物理研究所. CN Patent 101406840.
    徐漢,“在高壓二氧化碳水溶液中進行氫解及氫化反應”, 碩士論文,國立清華大學化學工程研究所(2013)。
    林新惟,“於綠色溶劑超臨界二氧化碳中進行觸媒反應與奈米複合材料之製備”, 博士論文,國立清華大學化學工程研究所(2014)。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE