簡易檢索 / 詳目顯示

研究生: 姚立人
論文名稱: 照光對有機金屬裂解法製程之SBT鐵電薄膜的特性影響
指導教授: 胡塵滌
Chen-Ti Hu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 137
中文關鍵詞: 照光有機鍵結結晶方向漏電流
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本實驗可分為兩部分,第一部分為利用汞燈照光輔助增加SBT鐵電薄膜在低溫焦化熱處理時有機溶劑的揮發,在薄膜低溫熱處理的製程中,分別於室溫、150oC、以及400oC加入10、20及30分鐘照光的輔助,藉以研究照光對於鐵電薄膜電性、結晶行為以及微結構的影響。由FTIR分析發現,以汞燈照射SBT鐵電薄膜,確實可以幫助熱處理時有機物的揮發,並且由X-ray繞射證實薄膜在(200)方向的結晶比例有顯著提升。經汞燈照射的試片有較大的晶粒尺寸與較好的鐵電特性,然而卻有漏電流較大的缺點。從XPS的分析可知,SBT薄膜在熱處理後,可能因為結晶退火的氣氛中含有少量還原性氣氛,造成大量的鉍被還原成金屬態原子,而降低了薄膜的絕緣性,使漏電流變大,此現象在汞燈照射的試片中更為明顯。經過400oC在N2O氣氛下作後續熱處理10分鐘,可以使原本被還原的金屬鉍原子轉變為氧化態,使薄膜的絕緣性增加,而克服了照光試片的漏電流方面缺點。
    第二部份實驗節錄於附錄中,使用與Si基板熱穩定性良好的Hf-silicate作為MIS結構中介電層的材料,以MOCVD鍍製不同厚度及不同(Hf/(Hf+Si))成分比例的Hf-silicate薄膜,探討在不同的熱處理條件下,對於MIS電容結構的電性影響。其次亦利用矽酸鉿作為MFIS電容結構的擴散阻絕層,結合具抗疲勞(Fatigue-Free)特性的SBT鐵電薄膜,探討不同條件的矽酸鉿對鐵電記憶體電性的影響。由實驗結果發現,MIS與MFIS兩種結構的電性皆無明顯的規律性,可能與所使用的MOCVD前趨溶液m.m.p.有關,其化學式為Hf[OC(CH3) 2CH2OCH3] 2 [OC(CH3)3]2,然而正確的原因與證據則需要更進一步的研究分析才能確定。


    目錄 第一章 緒論……………………………………………………………...1 1-1 前言……………………………………………………………….....1 1-2 研究方向………………………………………………………….....3 第二章 文獻回顧………………………………………………………...4 2-1 鐵電材料……………..………………………………………….…4 2-1-1鐵電特性…………………….…………………………………4 2-1-2鐵電材料結構及特徵…………………………….……………6 2-2鐵電薄膜與鐵電記憶體之發展…………………..………………..7 2-3鐵電薄膜的製程…..………………………………………….……9 2-3-1 有機金屬裂解法……………………………………..............10 2-3-2 有機金屬裂解法的基本原理………………………………..10 2-3-3 薄膜披覆製程………………………………………………..11 2-3-4 低溫焦化熱處理……….…………………………………….12 2-3-5 高溫結晶與緻密化處理……………………………………..13 2-3-6 SBT鐵電薄膜之相變化……………………………………...13 2-4鐵電薄膜於記憶元件上的應用…..……………………….………14 2-5鐵電薄膜的可靠度…..…………………………….………………17 2-6文獻中化學溶液沉積法中有機溶劑殘餘與鐵電薄膜的紫外線輔助熱處理的相關研究………..…………………………………….17 第三章 實驗程序……………………………………………………….28 3-1基板之準備………………………………………………………….28 3-1-1擴散阻絕層及黏卓層的製備……………………………………28 3-1-2白金底電極的製備………..……………………………………..29 3-2 SBT鐵電薄膜製備………………………………………………….29 3-2-1 SBT溶液之TG/DTA分析.……………………………………..29 3-2-2以有機金屬裂解法製備SBT薄膜及照光程序………………...30 3-3薄膜性質之量測分析………………………………………………..31 3-3-1薄膜電性量測…….……………………………………………...31 3-3-2薄膜物性分析…………………………….……………………...32 第四章 結果與討論…………..………………………………………....39 4-0試片代號介紹……………………………………………….……..39 4-1 FTIR分析…………………………………………………….……40 4-2 XRD晶體結構分析…………………………………….………….41 4-3 XPS分析…………………………………………………….……..43 4-4 微觀結構分析……………………………………………….…….44 4-4-1 SEM微結構分析……………………………………………….44 4-4-2 AFM微結構分析………………………………………………46 4-5 鐵電特性量測結果………………………………………….…….47 4-6 介電特性量測結果………………………………………….…….48 4-7 漏電流特性量測結果……………….………..…………………...49 4-8 N2O氣氛下作後續熱處理………………………….......................50 4-8-1 XPS分析……………………………………………………….51 4-8-2單一層SBT經N2O氣氛下後續熱處理的晶體結構與表面形貌…………………………………….…………………………51 4-8-3五層SBT經N2O氣氛下後續熱處理的晶體結構與表面形貌…………………………………….…………………………52 4-8-4介電特性量測結果…………….……………………………….52 4-8-5漏電流特性量測結果………………….……………………….52 第五章 結論…………………………….…………………………...…94 附錄(Appendix)…..……………………………………..……………….96 A-1 緒論………………………………………………………………96 A-1-1 前言…………………………………………………………...96 A-1-2 研究方向……………………………………………………...97 A-2文獻回顧…………………………………………………………..97 A-2-1高介電材料….………………………………………………...97 A-2-1-1高介電材料的發展契機…………………………………..97 A-2-1-2高介電材料的選擇………………………………………..98 A-2-1-3鍍覆HfO2所遭遇的問題………………………………….99 A-3 實驗程序………………………………………………………100 A-3-1基板準備……………………………………………………101 A-3-1-1擴散阻絕層製備…………………………………………..101 A-3-1-2有機金屬裂解法製備SBT薄膜的流程………………...101 A-3-1-3 白金電極製備…………………………………………..102 A-3-1-3-1底電極的製備………………………………………..102 A-3-1-3-2頂電極的製備……………………………………….103 A-3-2 MIS與MFIS結構性質之量測分析………………………..103 A-3-2-1電性量測…………………………………………………103 A-4 結果與討論……………………………………………...…...…..105 A-4-0 試片代號介紹……………………………………………….106 A-4-1 MIS電容-電壓量測…...…………...…………………….....107 A-4-1-1 Hf-silicate厚度為150 Å的MIS結構電性比較.……...107 A-4-1-2 Hf-silicate厚度為40 Å的MIS結構電性比較……......108 A-4-1-3 Hf-silicate厚度為150Å與40 Å的MIS結構電性比較. ………………………………………………………108 A-4-2 MFIS電容電壓量測……………………………………..……110 A-5 結論……………………………………………………………….111 參考文獻……………………………………………………………….129 表目錄 表4-1 照光實驗試片條件及代號…………………………………..54 表4-2 XPS分析氧化態鉍與金屬態鉍的譜峰面積比例…………...55 表4-3 XPS SBT薄膜元素的熱力學性質……………………………..56 表4-4各試片殘餘極化值與殘餘極化值增量..……………………57 表4-5各試片電容值與介電常數(k值)……………………………….58 表A-1高積集度積體電路元件中的高介電材料所應滿足的條件..112 表A-2 Hf-silicate試片條件及代號...………………………………113 圖目錄 圖2-1 鈣鈦礦結構內的鐵電域圖,AA’為90度域壁,BB’為180度域壁…………………………………………………………….19 圖2-2 鐵電材料極化(P)與外加電場(E)的關係……………..……….20 圖2-3 鈣鈦礦結構…………………….................................................21 圖2-4 SrBi2Ta2O9的層狀鈣鈦礦結構……………………………….22 圖2-5 浸鍍的過程……………………………………….……………23 圖2-6 旋鍍的過程………………………………………………….…23 圖 2-7 SBT內三種相之XRD繞射峰圖形…………………..……...24 圖2-8 鐵電薄膜用於DRAM之操作示意圖……………...................25 圖2-9一般線性介電值(a)與非線性介電值(b)……………………….25 圖2-10 FET-type鐵電記憶體操作原理示意圖………………....……26 圖2-11 1T-1C type 鐵電記憶體操作原理……………………............27 圖3-1 DTA原理示意圖…….…………………………………..……34 圖3-2 SBT溶液之TG分析………………………………………….35 圖3-3 SBT溶液之DTA分析………………………………………..35 圖3-4 汞燈照射裝置示意圖…………………………..……………..36 圖3-5 SBT薄膜電容結構…………………………………………...37 圖3-6 實驗步驟流程圖……………………….………………………38 圖4-1 汞燈的光譜分佈…………………………………….……..…..56 圖4-2 SBT溶液與甲乙基酮的紫外光吸收光譜……………………..59 圖4-3 FTIR分析…….………………………………………………...60 圖4-4烘烤及焦化10分鐘的XRD分析…….………………............61 圖4-5烘烤及焦化20分鐘的XRD分析…….………………............62 圖4-6烘烤及焦化30分鐘的XRD分析…….………………............63 圖4-7 XRD繞射峰強度比………………………………….………...64 圖4-8單一層SBT 試片A60與B60的XRD分析…………………65 圖4-9元素鍶的XPS分析…………………………………………….66 圖4-10元素鉭的XPS分析……………………………………………67 圖4-11元素鉍的XPS分析……..…………………………………….68 圖4-12 烘烤及焦化10分鐘SEM表面形貌低倍率….………….….69 圖4-13 烘烤及焦化20分鐘SEM表面形貌低倍率….………….….70 圖4-14 烘烤及焦化30分鐘SEM表面形貌低倍率….………….….71 圖4-15 烘烤及焦化10分鐘SEM表面形貌高倍率….………….….72 圖4-16 烘烤及焦化20分鐘SEM表面形貌高倍率….………….….73 圖4-17 烘烤及焦化30分鐘SEM表面形貌高倍率….………….….74 圖4-18單一層SBT 試片A60與B60的SEM表面形貌……………75 圖4-19 烘烤及焦化20分鐘AFM影像……………………………...76 圖4-20 烘烤及焦化30分鐘AFM影像……………………………...77 圖4-21熱處理10分鐘的P-E遲滯曲線……………………….…….78 圖4-22熱處理20分鐘的P-E遲滯曲線……………………….…….79 圖4-23熱處理30分鐘的P-E遲滯曲線……………………….…….80 圖4-24殘餘極化值隨照光條件的變化………………………………81 圖4-25殘餘極化值隨熱處理時間的變化……………………………81 圖4-26殘餘極化值的增加比例………………………………………81 圖4-27殘餘極化值與1~6V外加電壓曲線…………………………..82 圖4-28照光實驗各試片的電容-電壓曲線…………………………..83 圖4-29不同汞燈照射條件在1.5V外加電壓下的電容值…………..84 圖4-30照光實驗各試片的電流-電壓曲線………………………….85 圖4-31試片A60與A60(N2O)的元素鉍的XPS分析……………….86 圖4-32試片B60與B60(N2O)的元素鉍的XPS分析……………….87 圖4-33單一層SBT 試片A60(N2O)與B60(N2O)的XRD分析……..88 圖4-34單一層SBT 試片A60(N2O))與B60(N2O)的SEM分析……89 圖4-35五層SBT 試片A20x5(N2O)與B20x5(N2O)的XRD分析……90 圖4-36五層SBT 試片A20x5(N2O)與B20x5(N2O)的XRD繞射峰強度比………………………………………………………...……90 圖4-37五層SBT 試片A20x5(N2O))與B20x5(N2O)的SEM分析…91 圖4-38五層SBT 試片A20x5與B20x5在不同熱處理條件的電容-電壓曲線………………………………………………..…...…92 圖4-39五層SBT 試片A20x5與B20x5在不同熱處理條件的漏電流特性量測………..…………………………………………...93 圖A-1 MIS電容結構………………...………………..……….……..114 圖A-2 SBT薄膜MFIS電容結構……………………………………115 圖A-3 第二部份實驗步驟流程圖…...……………………………...116 圖A-4 記憶視窗(a)順時針,鐵電效應(b)逆時針,電荷陷阱效應….117 圖A-5 試片I-150電容-電壓曲線…………..……………………....118 圖A-6 試片I-150電性隨成分比較….….……..……………….…....119 圖A-7 試片I-40電容-電壓線……………………………..……...…120 圖A-8 試片I-40電性隨成分比較….….……..……………….…......121 圖A-9 試片I-150與I-40的window的比較……………………….122 圖A-10 試片I-150與I-40的Cmax的比較…………………………123 圖A-11 試片I-150與I-40的Vfb的比較…………………………….124 圖A-12 試片F-150 電容-電壓曲線………………………………..125 圖A-13 試片F-150電性隨成分比較.….……..……………….…....126 圖A-14試片F-40 電容-電壓曲線………………………………...127 圖A-15試片F-40電性隨成分比較….….……..……………….…....128

    參考文獻
    1. Ching-Chich Leu, Chao-Hsin Chien, Ming-Jui Yang, Ming-Che Yang, Tiao-Yuan Huang, Hung-Tao Lin, and Chen-Ti Hu, “Effects of ultrathin tantalum seeding layers on sol-gel-derived SrBi2Ta2O9 thin films”, Appl. Phys. Lett. Vol. 80, pp. 4600-4602 (2002)
    2. Woong-Chul Shin, Kyu-Jeong Choi, and Soon-Gil Yoon, “Low-temperature crystallization of SrBi2Ta2O9 thin films with Bi2O3 interfacial layers by liquid-delivery metalorganic chemical vapor deposition”, J. Mater. Res. Vol. 17, No. 1, pp. 26-30 (2002)
    3. Yasuyukiito, Maho Ushikubo, Seiichi Yokoyama, Hironori Matsunaga, Tsutomu Atsuki, Tadashi Yonezawa, and Katsumi Ogi, “New low temperature processing of sol-gel SrBi2Ta2O9 thin films”, Integ. Ferro. Vol.14, pp. 123-131(1997)
    4. Tze Chiun, Tingkai Li, Xubai Zhang, and Seshu B. Desu, “The effect of excess bismuth on the ferroelectric properties of SrBi2Ta2O9 thin film”, J. Mater. Res. Vol. 12, No. 6, pp. 1569-1575 (1997)
    5. S. Bhattacharyya, Apurba Laha, and S. B. Krupanidhi, “Impact of Sr content on dielectric and electrical properties of pulsed laser ablated SrBi2Ta2O9 thin films”, J. Appl. Phys. Vol. 92, pp. 1056-1061 (2002)
    6. Hyeong-Ho Park,Sook Yook,Hyung-Ho Park,Ross H.Hill,”Electrical properties of PZT tjin film by photochemical deposition”,Thin Solid Film 447-448 (2004) 669-673
    7. Chang Jung Kim,Dae Sung Yoon,Zhong-Tae Jiang,Kwangsoo No,”Investigation of the drying temperature dependence of the orientation in sol-gel processed PZT thin films” J.Materials Science 32 (1997) 1213-1219
    8. L.Parodo,RPoyato,R.Poyato,A.Gozalez,M.L.Calzada,”Low temperatuere preparation of piezoelectric thin film by ultraviolet-assisted rapid thermal processing”Material Science in Semiconductor Processing 5 (2003) 77~83
    9. Tae-Ho Park,Ki-Ho Yang,Dong-Kyun Kang,”Electrical properties of ferroelectric SBT thin films prepared using photosensitive sol-gel solution”,J.Materials Science 38 (2003) 1259-1300
    10. 錢維烈, 鐵電物理學, 科學出版社 (1996)
    11. X. Xu, “Ferroelectric Materials and their application”, North Holland, Netherlands (1991)
    12. 鄭晃忠, 史德智, “極大型積體電路之鐵電材料”, 電子月刊, 第五卷第六期 (1999)
    13. 陳銘森, ”鎳酸鑭電極對鋯鈦酸鉛溶凝膠製作與特性影響之研究”, 清華大學, 博士論文 (1996)
    14. Ismunandar and B. J. Kennedy, “Structure of ABi2Nb2O9(A=Sr, Ba): Refinement of Powder Neutron Diffraction Data”, J. Solid State Chem. Vol. 126, pp. 135-141 (1996)
    15. S. Y. Wu, IEEE Trans. Electron Devices ED21 (1974)
    16. 陳三元, “強介電薄膜之液相化學製作法”, 工業材料, p108 (1995)
    17. J. S. Lee, H. J. Kwon, S. J. Hyun, and T. W. Noh, “Structure characterization of the low-temperature phase in Sr-Bi-Ta-O films”, Appl. Phys. Lett. Vol. 74, pp. 2690-2692 (1999)
    18. M. A. Rodriguez, T. J. Boyla, B. A. Hernandez, C. D. Buchheit, and M. O. Eatough, “Formation of SrBi2Ta2O9: Part1. Evidence of a bismuth-deficient pyrochlore phase”, J. Mater. Res. Vol. 11, pp. 2282-2287 (1996)
    19. C.-H. Lu, B.-K. Fang, and C.-Y. Wen, “Structure Identification and Electrical Properties of the New Pyrochlore Phase in the Sr-Bi-Ta-Ti-O system”, Jpn. J. Appl. Vol. 39, pp. 5573-5576 (2000)
    20. I. Koiwa, Y. Okada, J. Mita, A. Hashimoto, and Y. Sawada, “Role of Excess Bi in SrBi2Ta2O9 Thin Film Prepared Using Chemical Liquid Deposition and Sol-Gel Method”, Jpn. J. Appl. Phys. Vol.36, pp. 5904-5907 (1997)
    21. T. Osaka, A. Sakakibara, T. Seki, S. Ono, I. Koiwa, and A. Hashimoto, “Phase Transition in Ferroelectric SrBi2Ta2O9 Thin Films with Change of Heat-treatment Temperature”, Jpn. J. Appl. Phys. Vol. 37, pp. 597-601 (1998)
    22. T. J. Boyle, C. D. Buchheit, M. A. Rodriguez, H. N. Al-Shareef, and B. A. Hernandez, “Formation of SrBi2Ta2O9: Part 1. Synthesis and characterization of a novel sol-gel solution for production of ferroelectric SrBi2Ta2O9 thin film”, J. Mater. Res. Vol. 11, pp. 2274-2281 (1996)
    23. 彭成鑑, “強介電陶瓷材料在動態隨機記憶體上的應用”, 工業材料, p107 (1995)
    24. 呂正傑, 詹世雄, “鐵電記憶體簡介”, 毫微米通訊第五卷第四期
    25. K. Amanuma, T. Hase, and Y. Miyasaka, “Preparation and ferroelectric properties of SrBi2Ta2O9 thin films”, Appl. Phys. Lett. Vol. 66, pp. 221-223 (1995)
    26. Y. Shinada, A. Azuma, Keisaku, S. Chaya, N. Moriwaki, and T. Otsuki, “Retention Characteristics of a Ferroelectric Memory based on SrBi2(Ta,Nb)2O9”, Jpn. J. Appl. Phys. Vol. 36, pp. 5912-5916 (1997)
    27. H. N. Al-Shareef, D. Dimos, W. L. Warren, and B. A. Tuttle, “Voltage offsets and imprint mechanism in SrBi2Ta2O9 thin films ”, J. Appl. Phys. Vol. 80, pp. 4573-4577 (1996)
    28. S.Bhaskar,S.B.Majumder,E.R.Fachini,R.S.Katiyar,”Influence of Precursor on the Ferroelectric Properties of Sol-Gel-Derived Lanthanum-Modified Lead Titante (PLT) Thin Film,J.Am.Ceram.Soc 87 384-390
    29. Guangda Hu,Tingao Tang,Jianbin Xu,”Preparation of (100)-Oriented LaNiO3 Oxide Electrodes for SrBi2Ta2O9-Based Ferroelectric Capacitors”,Jpn,J,Appl,Phys.Vol 41 6877-6881
    30. Gun-Tae Park,Chee-Sung Park,Jong-Jin Choi,Hyoun-Ee Kim,”Orientation control of sol-gel-derived PZT film by addition of polyvinylpyrrolidone”,J.Mater.Res. Vol 20 882-888 (2005)
    31. Jae-Seob Hwang,Woo Sik Kim,Hyung-Ho Park,Tae-Song Kim,”The effect of intermediate anneal on the ferroelectric properties of direct-patternable PZT films
    32. Aidong Li,Di Wu,Huigin Ling,Tao Yu,Mu,Wang,Xiaobo Yin,Zhiguo Liu,Naiben Ming,”Effect of processing on the characteristics of SrBi2Ta2O9 films prepared by metalorganic decomposition”,J.Appl.Phys. Vol.88 1035-1040 (2000)
    33. Ichiro Koiwa,Takao Kanehara,Hiroyo Kato,Sachiko Ono,Akira Sakakibara,Tetsuya Osaka,Katsuhiko Asami,”Effect of H2 Sintering and Pt Upper Electrode on Metallic Bi Content in Sr0.9Bi2.1Ta2O9 Thin Film for Ferroeletric Memories prepared by Sol-Gel Method”,Jpn.J.Appl.Phys Vol.37 pp.5192-5197 (1998)
    34. Sachiko Ono, Akira Sakakibara, Tetsuya Osaka, Ichiro Koiwa,Juro Mita, Katsuhiko Asami,”Characterization of Ferroelectic SrBi2Ta2O9 Thin Film Prepared from Alkoxide Solutions”,J.Electrochemical Society 146(2) 685-690 (1999)
    35. Bing-Yue Tsui and Hsiu-Wei Chang, “Formation of interfacial layer during reactive sputtering of hafnium oxide”, J. Appl. Phys. Vol. 93, pp. 10119-10124 (2003)
    36. Hyoungsub Kim, Paul C. Mclntyre, and Krishna C. Saraswat, “Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition”, Appl. Phys. Lett. Vol. 82, pp. 106-108 (2003)
    37. 吳啟明, “The Study of (BaSr)TiO3 Thin Films Deposited on LaNiO3 Electrode by rf Magnetron Sputtering for DRAMs Applications”, 清華大學, 博士論文(1997)
    38. Moonju Cho, Jaehoo Park, Hong Bae Park, Cheol Seong Hwang, Jaehack Jeong, and Kwang Soo Hyun, “Chemical interaction between atomic-layer-deposited HfO2 thin films and the Si substrate”, Appl. Phys. Lett. Vol. 81, pp. 334-336 (2002)
    39. B. Yu, H. Wang, C. Riccobene, Q.Xiang, and M.R. Lin, Symp. on VLSI Tech. Dig. P90 (2000)
    40. B. Cheng, M. C. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. C. Stork, Z. Yu, M. Zeitzoff, and J.C. S. Woo, “The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs”, IEEE Trans. Electron Devices Vol. 46, pp. 1537-1544 (1999)
    41. M.-H. Cho, D.-H. Ko, Y. G. Choi, K.Jeong, I. W. Lyo, D. Y. Noh, H. J. Kim, and C. N. Whang, “Structural and electrical characteristics of Y2O3 films grown on oxidized Si (100) surface” J. Vac. Sci. Technol. A 19, pp. 192-199 (2001)
    42. B. H. Lee, Y. J. K. Zawadzki, W.-J. Qi, and J. Lee, “Effects of interfacial layer growth on the electrical characteristics of thin titanium oxide films on silicon”, Appl. Phys. Lett. Vol. 74, pp. 3143-3145 (1999)
    43. V. Mikhelashvili and G. Eisenstein, “Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation”, J. Appl. Phys. Vol. 89, pp. 3256-3269 (2001)
    44. M.-H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D.-H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, “Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition”, Appl. Phys. Lett. Vol. 81, pp. 472-474 (2002)
    45. Jack C. Lee, “Ultra-thin gate dielectrics and High-k dielectrics”, IEEE EDS vanguard series of independent short courses
    46. J. Park, B. K. Park, M. Cho, C. S. Hwang, K. Oh, and D. Y. Yang, “Chemical Vapor Deposition of HfO2 Thin Films Using a Novel Carbon-Free Precursor”, J. Electrochemical. Soci. Vol. 149(1), pp. G89-G94 (2002)
    47. J.-C. Lee, S.-J. Oh, M. Cho, C. S. Hwang, and R. Jung, “Chemical structure of the interface in ultrathin HfO2/Si films”, Appl. Phys. Lett. Vol. 84, pp. 1305-1307 (2004)
    48. J. Q. He, A. Teren, C. L. Jia, P. Ehrhart, K. Urban, R. Waser, and R. H. Wang, “Microstructure and interfaces of HfO2 thin films grown on silicon substrates”, J. Crys. Grow. Vol. 262, pp. 295-303 (2004)
    49. S. J. Wang, P. C. Lim, A. C. H. Huan, C. L. Liu, J. W. Chai, S. Y. Chow, J. S. Pan, Q. Li, and C. K. Ong, “Reaction of SiO2 with hafnium oxide in low oxygen pressure”, Appl. Phys. Lett. Vol. 82, pp. 2047-2049 (2003)
    50. K.-J. Choi, J.-B. Park, and S.-G. Yoon, “Control of the Interfacial Layer Thickness in Hafnium Oxide Gate Dielectric Grown by PECVD”, J. Electrochemical. Soci. Vol. 150(4), pp. F75-F77 (2003)
    51. C. Essary, J. M. Howard, V. Craciun, D. Craciun, and R. K. Singh, “Kinetics of interfacial layer formation during deposition of HfO2 on silicon”, Thin Solid Films Vol. 450, pp. 111-113 (2004)

    52. K. Choi, H. Temkin, H. Harris, S. Gangopadhyay, L. Xie, and M. White, “Initial growth of interfacial oxide during deposition of HfO2 on silicon”, App. Phys. Lett. Vol. 85, pp. 215-217 (2004)
    53. J. Lu, J. Aarik, J. Sundqvist, K. Kukli, A. Harsta, and J.-O. Carlsson, “Analytical TEM characterization of the interfacial layer between ALD HfO2 film and silicon substrate”, J. Crys. Grow. Vol. 273, pp. 510-514 (2005)
    54. G. He, M. Liu, L. Q. Zhu, M. Chang, Q. Fang, and L. D. Zhang, “Effect of postdeposition annealing on the thermal stability and structural characteristics of sputtered HfO2 films on Si (100)”, Surf. Scie. Vol. 576, pp. 67-75 (2005)
    55. B. H. Lee, L. Kang, R. Nieh, W.-J. Qi, and Jack C. Lee, “Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing”, Appl. Phys. Lett. Vol. 76, pp. 1926-1928 (2000)
    56. S. Van Elshocht, M. Caymax, S. De Gendt, T. Conard, J. Petry, L. Date, D. Pique, and M. M. Heyns, “Composition and Growth Kinetics of the Interfacial Layer for MOCVD HfO2 Layers on Si substrates”, J. Electrochemical. Soci. Vol. 151, pp. F77-F80 (2004)
    57. H.Kim,P.C.Mclntyre,”Spinodal decomposition in amorphous metal-silicate thin films:Phase diagram analysis and interface effects on kinetics”,J.Appl.Phys Vol.92 5094-5012 (2002)
    58. V.N.Parfenenov,R.B.Grebenshchikov,N.A.Toropov,Dokl.Akad.Nauk, SSSR 185 840(1969)
    59. Yu-Hsien Lin,Chao-Hsin Chien, Ching-Tzung Lin,Chun-Yen Chang,Tan-Fu Lei,”High Performance Nonvalotile HfO2 Nanocrystal Memory
    60. S.Van.Elshocht,U.Weber,T.Conard,V.Kaushink,M.Houssa,S.Hyun,B.Seitzinger,P.Lehnen,M.Schumacher,J.Lindner,M.Caymax,M.Heyns,”Electrical Characterization of Capacitors with AVD-Deposited Hafnium Silicates as High-k Gate Dielectric”,Joural of The Electrochemical Society 152 (11) F185-F189 (2005)
    61. Jaehyun Kim,Kijjung Yong,”Atomic Layer Chemical Vapor Deposition and Electrical Charaterization of Hfnium Silicate Film”,J.The Electrochemical.Society 152(4)F45-F48
    62. C.Hobbs,L.Fonseca,V.Dhandapani,S.Samavedam,B.Taylor,Tech.Dig. Symp.VLSI Technol p.165 (2003)
    63. Kenji Shiraishi,Keisaku Yamada,Kazuyoshi Torii,Yasushi Akasaka,Kiyomi NakaJima,Mitsuru Konno,Toyohiro Chikyow, Hirosh Kitajima,Tsunetoshi Arikado,”Oxygen Vacancy Induced Substantial Threshold Voltage Shift in the Hf-based High-k MISFET with p+ploy-Si Gate –A Theoretical Approach”,Jpn.J.Appl.Phys,Vol.43 No.11A,L1413-L1415 (2004)
    64. M.-H.Cha,K.B.Chung,C.N.Whang,D.W.Lee,D-H.Ko,”Phase separation and electronic structure of Hf-silicate film as a function of composition”,Appl.Phys.L,Vol.87,242906 (2005)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE