簡易檢索 / 詳目顯示

研究生: 周怡均
Yi-Chun Chou
論文名稱: 低密度偶校迴旋碼之新建構方式
New Constructions of LDPC Convolutional Codes
指導教授: 趙啟超
Chi-chao Chao
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 43
中文關鍵詞: 低密度偶校碼迴旋碼
外文關鍵詞: LDPC code, convolutional code
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 低密度偶校區塊碼(Low-Density Parity-Check Block Codes) 已經被證實當運用疊代訊號傳遞解碼(Iterative Message Passing Decoding)以及配合極長的碼長時,會有接近Shannon bound的表現。不過,區塊碼有在編碼及解碼的複雜度過高的缺點。
    低密度偶校迴旋碼(Low-Density Parity-Check Convolutional Codes)本身是一種迴旋碼,它的特性是具有低密度的偶校矩陣。它也可以運用疊代訊號傳遞來解碼,所以其解碼複雜度跟低密度偶校迴旋碼相同。低密度偶校迴旋碼之編碼器和解碼器都可以有連續的輸出並且可以編碼成任意長度。我們可以用位移暫存器來做編碼,因為其編碼複雜度會相對的低很多。
    目前的文獻所提出的低密度偶繳迴旋碼之建構方式十分的有限,主要都是運用類訊環低密度偶校碼(Quasi-Cyclic Low-Density Parity-Check Codes)來建造。但是,在之前所提出的這種代數建構方式中,有可能會建造出含有長度6的循環的碼。所以在這篇論文中,我們將提出推廣的建構方式並且確保這種建構方式所造出來的碼,一定不會有長度4的循環。在我們所提出的建構方式中,我們運用循環的條件,找出了確保不會有長度6的循環的建構方式。
    模擬結果顯示我們所提出的建構方式可以造出表現和過去建構方式一樣好的碼。然而,在過去的建構方式中,必須要運用電腦模擬來找參數,以確保不會含有長度6的循環。我們所提出的建構方式可確保我們的碼所包含的循環長度一定大於或等於8。


    Abstract
    Low-density parity-check (LDPC) block codes have been shown to have near-capacity perfor-
    mance with iterative message-passing decoding and su±ciently long block length. However,
    block codes have the disadvantages in the respect of encoding and decoding complexity.
    LDPC convolutional codes (LDPC-CCs) are convolutional codes with sparse parity check
    matrices. They can encode and decode arbitrary lengths of data and can be encoded using
    shift registers with small complexity. Previous algebraic constructions of LDPC-CCs are all
    based on their quasi-cyclic LDPC (QC-LDPC) block code counterparts. However, codes of
    girth 6 may be obtained by previous methods. Therefore, in this thesis, we develop a general-
    ized construction of LDPC-CCs and girth of the constructed codes is at least 6. Within this
    set of codes, we propose constructions for LDPC-CCs of girth at least 8. Simulation results
    show that codes of girth 8 by our construction have performance similar to codes constructed
    by the previous method. However, computer search is needed for ‾nding codes of girth 8
    in previous constructions, while the codes obtained by our constructions are guaranteed to
    have a girth at least 8.
    i

    1 Introduction 1 2 Introduction to Low-Density Parity-Check Codes 3 2.1 Low-Density Parity-Check Codes . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Decoding Algorithm for LDPC Codes . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Quasi-Cyclic LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 LDPC Convolutional Codes 10 3.1 De‾nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Decoding Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 Previous Algebraic Construction . . . . . . . . . . . . . . . . . . . . . . . . . 14 4 Properties and Constructions of LDPC Convolutional Codes 17 4.1 Girth of LDPC Convolutional Codes . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Integral-Domain Construction of 4-Cycle-Free LDPC-CCs . . . . . . . . . . 23 ii 4.3 Construction of 6-Cycle-Free LPDC-CCs . . . . . . . . . . . . . . . . . . . . 26 5 Computer Simulation 30 5.1 Observations in LDPC-CC Decoding . . . . . . . . . . . . . . . . . . . . . . 30 5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6 Conclusion 40

    [1] R. G. Gallager, \Low-density parity-check codes," IEEE Trans. Inform. Theory, vol. 8,
    pp. 21{28, Jan. 1962.
    [2] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, \Factor graphs and the sum-product
    algorithm," IEEE Trans. Inform. Theory, vol. 47, pp. 498{519, Feb. 2001.
    [3] M. P. C. Fossorier, \Quasi-cyclic low density parity-check codes from circulant permu-
    tation matrices," IEEE Trans. Inform. Theory, vol. 50, pp. 1788{1793, Aug. 2004.
    [4] Y. Kou, S. Lin, and M. Fossorier, \Low density parity-check codes based on ‾nite
    geometrices: A rediscovery and new results," IEEE Trans. Inform. Theory, vol. 47, pp.
    2711{2736, Nov. 2001.
    [5] A. Sridharan, T. Fuja, and R. M. Tanner, \Low density parity check codes from per-
    mutation matrices," in Proc. Conf. on Inform. Sciences and Systems, Baltimore, MD,
    Mar. 2001, p. 142.
    [6] J. L. Fan, \Array codes as low density parity-check codes," in Proc. 2nd Int. Symp.
    Turbo Codes and Related Topics, Brest, France, Sept. 2000, pp. 543{546.
    [7] A. J. Felstrom and K. S. Zigangirov, \Time-varying periodic convolutional codes with
    low-density parity-check matrix," IEEE Trans. Inform. Theory, vol. 45, pp. 2181{2191,
    Sept. 1999.
    41
    [8] A. Schaefer, M. Moerz, J. Hagenauer, A. Sridharan, and D. J. Costello, Jr., \Analog
    rotating ring decoder for an LDPC convolutional code," in Proc. IEEE Inform. Theory
    Workshop, Paris, France, Mar. 2003, p. 226.
    [9] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello, \LDPC block
    and convolutional codes based on circulant matrices," IEEE Trans. Inform. Theory,
    vol. 50, pp. 2966{2984, Dec. 2004.
    [10] K. Engdahl and K. S. Zigangirov, \To the theory of low-density convolutional codes I,"
    Probl. Inf. Trans., vol. 35, pp. 295{310, Dec. 1999.
    [11] M. Lentmaier, D. V. Truhachev, and K. S. Zigangirov, \To the theory of low-density
    convolutional codes II," Probl. Inf. Trans., vol. 37, pp. 288{306, Oct. 2001.
    [12] K. S. Zigangirov and M. Lentmaier, \Mathematical analysis of an iterative algorithm
    for low-density code decoding," Probl. Peredach. Inform., vol. 36, pp. 35{46, Oct. 2000.
    [13] A. Sridharan, D. Truhachev, M. Lentmaier, D. J. Costello, Jr., and K. S. Zigangirov,
    \On the free distance of LDPC convolutional codes," in Proc. IEEE Int. Symp. Inform.
    Theory, Chicago, IL, June 2004, p. 312.
    [14] A. E. Pusane, M. Lentmaier, K. S. Zigangirov, and D. J. Costello, Jr., \Reduced com-
    plexity decoding strategies for LDPC convolutional codes," in Proc. IEEE Int. Symp.
    Inform. Theory, Chicago, IL, June 2004, p. 491.
    [15] J. Pittermann, M. Lentmaier, and K. S. Zigangirov, \On bandwidth-e±cient convo-
    lutional LDPC codes," in Proc. IEEE Int. Symp. Inform. Theory, Yokohama, Japen,
    June 2003, p. 235.
    42
    [16] A. Jimenez and K. S. Zigangirov, \Periodic time-varying convolutional codes with low-
    density parity-check matrices," in Proc. IEEE Int. Symp. Inform. Theory, Cambridge,
    MA, Aug. 1998, p. 305.
    [17] D. Truhachev, M. Lentmaier, and K. S. Zigangirov, \Mathematical analysis of iterative
    decoding of LDPC convolutional codes," in Proc. IEEE Int. Symp. Inform. Theory,
    Washington, DC, June 2001, p. 191.
    [18] M. Lentmaier, A. Sridharan, K. S. Zigangirov, and D. J. Costello, \Terminated LDPC
    convolutional codes with thresholds close to capacity," in Proc. IEEE Int. Symp. Inform.
    Theory, Adelaide, Australia, Sept. 2005, pp. 1372{1376.
    [19] A. Sridharan, D. J. Costello, Jr., D. Sridhara, T. E. Fuja, and R. M. Tanner, \A
    construction for low density parity check convolutional codes based on quasi-cyclic block
    codes," in Proc. IEEE Int. Symp. Inform. Theory, Lausanne, Switzerland, June 2002,
    p. 481.
    [20] A. Sridharan and D. J. Costello, Jr., \A new construction for low density parity check
    convolutional codes," in Proc. IEEE Inform. Theory Workshop, Bangalore, India, Oct.
    2002, p. 212.
    [21] S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications,
    2nd ed. Upper Saddle River, NJ: Prentice Hall, 2004.
    [22] R. J. McEliece, The Theory of Information and Coding, 2nd ed. Cambridge, UK:
    Cambridge University Press, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE