研究生: |
鍾侑原 Jhong,You-Yuan |
---|---|
論文名稱: |
介電彈性體致動器性能改善方法以及其於閥元件之應用 A Method to Improve the Performance of Dielectric Elastomer Actuator and Its Application for Valve Devices |
指導教授: |
傅建中
Fu,Chien-Chung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 電驅動高分子 、介電彈性體致動器 |
外文關鍵詞: | electroactive polymer, dielectric elastomer actuator |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於機器人能夠代替人類執行高難度或極端危險的任務,提高生產效率或減少人員損傷,因此它們將在科技工業、一般民生、國防安全等領域扮演重要的角色,有鑑於機器人產業是未來的明星產業,間接帶動了電驅動高分子 (Electroactive Polymer) 材料的研究風潮。介電彈性體即為EAP材料的其中之一,介電彈性體致動器 (Dielectric Elastomer Actuator:DEA) 是一種新興的高分子致動器,其具有大的致動力量、大應變以及快速的響應時間等等的優點,這種材料在仿生機器人的應用上具有相當大的潛力,因為它可以取代笨重馬達或齒輪等等任何的傳統機械裝置,使得未來的機器人更輕盈、更靈活、能夠完成更艱難的任務。然而DEA本身的特性尚在研究階段,距離實際應用還需要更多的研究投入。
本研究採用3M公司所生產的VHB4910膠帶作為介電彈性體材料,製作出拮抗式致動的介電彈性體致動器;並且參考Heim [11] 所提出的DEA構造:Universal Muscle Actuator (UMA)。從致動器的製作開始,對其致動性能進行實驗分析。根據實驗觀測結果,我們發現了VHB4910材料本身的潛變行為會對致動器位移量及運動模式造成不良的影響。對此我們提出了一個改善的方法,使得致動器位移量能夠維持穩定,運動模式亦可以較為規律。最後我們設計了一個拮抗式介電彈性體致動器驅動之閥元件,該閥具有開關及比例輸出流量的功能,而我們所提出的方法可用於改善此閥元件的性能。
Robots can be a substitute for human being to execute very difficult or extremely dangerous missions. Efficiency of production can be improved and injury of human body can be avoided by the participation of robots. As a result, robots are going to play an important role in fields of technical industry, civil industry, and defense industry, etc.
The agitation to the research of electroactive polymer material arises from the great potential of robotic industry to be the star industry in the future. Dielectric elastomer is one among the electroactive polymers. Dielectric Elastomer Actuators (DEAs) are emerging sort of actuators relative to those made from piezoelectric ceramic and shape memory alloy, which can generate large actuation force(>1N), strain(up to 300% in area), and fast response(<100ms) to electrical stimuli. The attractive characteristics of DEAs offer numerous possibilities for the application of bio-mimetic robots since they can substitute traditional mechanical devices such as motors and gears, etc., which are often heavy and lumpish. Robots made from DEAs will be able to handle more complex situation since they are lighter, more flexible, and have better mobility. However, the characteristics of DEAs have not been well understood till now, more works are required to be done to approach practical applications.
In this study, antagonistically-actuated DEAs are fabricated by using VHB4910 tape from 3M Company to be the dielectric elastomer. We adopt the configuration of DEAs: Universal Muscle Actuator, that was first proposed by Heim[11]. At the initial stage we fabricated the UMA, and then experimental investigation was conducted. According to the experimental results, we discovered that creeping behavior that intrinsically exists in VHB4910 would cause many unwanted effects to the actuation displacement and the moving mode of DEAs.
The motivation of this study is to be aimed at the improvement of the performance of DEAs that is lowered down by the creeping behavior. We propose a solution to stabilize the actuation displacement and make the moving mode of DEAs more regular.
Finally we design an antagonistically-DEAs-driven valve devices that can perform on/off and proportional output functions. The proposed solution is then used to improve the performance of the valve devices.
[1] Yoseph Bar-Cohen, ”EAP as Artificial Muscles –
Progress and Challenges,” Proc. SPIE Smart Structures and Materials 2004 (EAPAD), 5385, 10-16 (2004).
[2] Shuchi Shoji and Masayoshi Esashi, ”Microflow Devices and Systems,”Journal of Micromechanics and Microengineering,4, 157-171 (1994).
[3] Ronald Pelrine, Roy Konrbluh, Qibing Pei, Jose
Joseph, ”High –Speed Electrically Actuated Elastomer
with Strain Greater than 100%,” Science, 287, 836-839
(2000).
[4] Roy Kornbluh, Ronald Pelrine, Jose Joseph, Richard Heydt, Qibing Pei, Seiki Chiba, ”High-Field Electrostriction ofElastomeric Polymer Dielectrics for Actuation,” Proc. SPIE Smart Structures and Materials 1999 (EAPAD), 3669, 149-161 (1999).
[5] Ronald Pelrine, Roy Kornbluh, Jose Joseph,
“Electrostriction of Polymer Dielectrics with Compliant Electrodes as A Means of Actuation,” Sensors and
Actuators, A 64, 77-85 (1998).
[6] Chritian Blzmacher, James Biggs, Mandayam Srinivasan,
“Flexible Dielectric Elastomer Actuators for Wearable
Human-Machine Interfaces,” Proc. SPIE Smart Structures
and Materials 2006 (EAPAD), 6168, 6168041-12 (2006).
[7] Kwangmok Jung, Jaedo Nam, Youngkwan Lee, Hyouk Ryeol
Choi, ”Micro Inchworm Robot Actuated by Artificial Muscle Actuator based on Non-prestrained Dielectric Elastomer," Proc. SPIE Smart Structures and Materials 2004 (EAPAD), 5385, 357-367 (2004).
[8] F. Carpi and D. De Rosii, ”Contractile Dielectric
Elastomer Actuator with Folded Shape,” Proc. SPIE Smart Structures and Materials 2006 (EAPAD), 6168, 61680D1-6 (2006).
[9] Qibing Pei, Marcus Rosenthal, Scott Stanford, Harsha
Prahlad, Ron Pelrine, ”Multiple-Degrees-of-Freedom
Electroelastomer Roll Actuators, ”Smart Materials and
Structures, 13, N86-N92 (2004).
[10] Hyouk Ryeol Choi, Sungmoo Ryew, Kwangmok Jung, Jaewook Jeon, Hunmo Kim. Jaedo Nam, Atsuo Takanishi, Ryutaro Maeda, Kenji Kaneko, Kazuo Tanie, ”Biomimetic Actuator Based on Dielectric Polymer,” Proc. SPIE Smart
Structures and Materials 2002 (EAPAD), 4695, 138-149 (2002).
[11] Jon Heim, “High-Performance Electroactive Polymer
Transducers, ”United States Patent, US2006/0208610 A1, Sep. 21, 2006
[12] Marcus Rosenthal, Neville Bonwit, Charle Duncheon, Jon Heim, ”Applications of Dielectric Elastomer EPAM
Sensors,” Proc. SPIE Smart Structures and Materials 2007
(EAPAD), 6524 (2007).
[12] Hyouk Ryeol Choi, Kwangmok Jung, Sungmoo Ryew, Jaedo
Nam, Jaewook Jeon, Ja Choon Koo, Kazuo Tanie,”
Biomimetic Soft Actuator: Design, Modeling, Control,
and Applications,” IEEE/ASME Transactions on
Mechatronics, 10,581-593 (2005).
[13] Hyouk Ryeol Choi, Sungmoo Ryew, Kwangmok Jung, Hunmo
Kim,Jaewook Jeon, Jaedo Nam, ”Soft Actuator for Robotic Applications Based on Dielectric Elastomer: Dynamic
Analysis and Applications,” Proc. 2002 IEEE Int. Conf.Robotics & Automation, 3218-3223 (2002).
[14] Roderic S. Lakes, Viscoelastic Solids, (Boca Raton, CRC Press) (1998).
[15] Masaki Haruna, Kazuki Kubo, Kouji Fukusumi and Tamida, “Development of Soft Actuator: Mechanism with Vibration Element Using Dielectric Elastomer to Generate Large Displacement,” Proc. SPIE Smart Structures and Materials 2007 (EAPAD), 6524, 6524181-10 (2007).