簡易檢索 / 詳目顯示

研究生: 鍾侑原
Jhong,You-Yuan
論文名稱: 介電彈性體致動器性能改善方法以及其於閥元件之應用
A Method to Improve the Performance of Dielectric Elastomer Actuator and Its Application for Valve Devices
指導教授: 傅建中
Fu,Chien-Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 62
中文關鍵詞: 電驅動高分子介電彈性體致動器
外文關鍵詞: electroactive polymer, dielectric elastomer actuator
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於機器人能夠代替人類執行高難度或極端危險的任務,提高生產效率或減少人員損傷,因此它們將在科技工業、一般民生、國防安全等領域扮演重要的角色,有鑑於機器人產業是未來的明星產業,間接帶動了電驅動高分子 (Electroactive Polymer) 材料的研究風潮。介電彈性體即為EAP材料的其中之一,介電彈性體致動器 (Dielectric Elastomer Actuator:DEA) 是一種新興的高分子致動器,其具有大的致動力量、大應變以及快速的響應時間等等的優點,這種材料在仿生機器人的應用上具有相當大的潛力,因為它可以取代笨重馬達或齒輪等等任何的傳統機械裝置,使得未來的機器人更輕盈、更靈活、能夠完成更艱難的任務。然而DEA本身的特性尚在研究階段,距離實際應用還需要更多的研究投入。
    本研究採用3M公司所生產的VHB4910膠帶作為介電彈性體材料,製作出拮抗式致動的介電彈性體致動器;並且參考Heim [11] 所提出的DEA構造:Universal Muscle Actuator (UMA)。從致動器的製作開始,對其致動性能進行實驗分析。根據實驗觀測結果,我們發現了VHB4910材料本身的潛變行為會對致動器位移量及運動模式造成不良的影響。對此我們提出了一個改善的方法,使得致動器位移量能夠維持穩定,運動模式亦可以較為規律。最後我們設計了一個拮抗式介電彈性體致動器驅動之閥元件,該閥具有開關及比例輸出流量的功能,而我們所提出的方法可用於改善此閥元件的性能。


    Robots can be a substitute for human being to execute very difficult or extremely dangerous missions. Efficiency of production can be improved and injury of human body can be avoided by the participation of robots. As a result, robots are going to play an important role in fields of technical industry, civil industry, and defense industry, etc.
    The agitation to the research of electroactive polymer material arises from the great potential of robotic industry to be the star industry in the future. Dielectric elastomer is one among the electroactive polymers. Dielectric Elastomer Actuators (DEAs) are emerging sort of actuators relative to those made from piezoelectric ceramic and shape memory alloy, which can generate large actuation force(>1N), strain(up to 300% in area), and fast response(<100ms) to electrical stimuli. The attractive characteristics of DEAs offer numerous possibilities for the application of bio-mimetic robots since they can substitute traditional mechanical devices such as motors and gears, etc., which are often heavy and lumpish. Robots made from DEAs will be able to handle more complex situation since they are lighter, more flexible, and have better mobility. However, the characteristics of DEAs have not been well understood till now, more works are required to be done to approach practical applications.
    In this study, antagonistically-actuated DEAs are fabricated by using VHB4910 tape from 3M Company to be the dielectric elastomer. We adopt the configuration of DEAs: Universal Muscle Actuator, that was first proposed by Heim[11]. At the initial stage we fabricated the UMA, and then experimental investigation was conducted. According to the experimental results, we discovered that creeping behavior that intrinsically exists in VHB4910 would cause many unwanted effects to the actuation displacement and the moving mode of DEAs.
    The motivation of this study is to be aimed at the improvement of the performance of DEAs that is lowered down by the creeping behavior. We propose a solution to stabilize the actuation displacement and make the moving mode of DEAs more regular.
    Finally we design an antagonistically-DEAs-driven valve devices that can perform on/off and proportional output functions. The proposed solution is then used to improve the performance of the valve devices.

    第一章 緒論 1.1前言- - - - - - - - - - - - - - - - - - - - - - - 1 1.2文獻回顧 - - - - - - - - - - - - - - - - - - - - - 2 第二章 理論分析 2.1 平面式介電彈性體致動器基本原理:Maxwell’s Stress - - 7 2.2 拮抗式介電彈性體致動器分析 2.2.1 分析對象 - - - - - - - - - - - - - - - - - 8 2.2.2 靜力學分析 - - - - - - - - - - - - - - - - - 8 2.2.3 動力學分析 - - - - - - - - - - - - - - - - 11 第三章 UMA之製作及致動性能量測 3.1 UMA之製作流程 - - - - - - - - - - - - - - - - - -13 3.2量測目的及方法 - - - - - - - - -- - - - - - - - - -13 3.2.1 量測設備 - - - - - - - - - - - - - - - - - 14 3.2.2 直流電壓驅動反應 - - - - - - - - - - - - - 14 3.2.3 弦波訊號驅動反應 - - - - - - - - - - - - - 14 3.2.4 外框間距h對致動位移及力量的影響 - - - - - 16 3.3 致動力量提昇:多層並聯UMA之製作與性能測試 3.3.1 多層並聯UMA之製作 - - - - - - - - - - - - 17 3.3.2 多層並聯UMA之性能測試 - - - - - - - - - - 18 第四章 研究動機 - - - - - - - - - - - - - - -- - - - - - 20 第五章 UMA位移控制方法 5.1 方法概述 - - - - - - - - - - - - - - - - - - - - 21 5.2 實驗驗證 - - - - - - - - - - - - - - - - - - - - 21 第六章 應用:UMA驅動之閥元件 6.1 閥元件設計 - - - - - - - - - -- - - - - - - - - - 23 6.2 性能量測- - - - - - - - - - - - - - - - - - - - - 24 6.2.1 開關功能測試 - - - - - - - - - - - - - - - 24 6.2.2 比例功能測試 - - - - - - - - - - - - - - - 25 6.2.3 流量不穩定行為之改善 - - - - - - - - - - - 26 第七章 結論與未來工作 - - - - - - - - - - - - - - - - - - 28 參考文獻 - - - - - - - - - - - - - - - - - - - - - - - - 29 附表 - - - - - - - - - - - - - - - - - - - - - - - - - - 32 附圖 - - - - - - - - - - - - - - - - - - - - - - - - - - 34 表目錄 表1-1 電子式及離子式EAP之優缺點比較[1] -- - - - - - - - - 32 表1-2 非預應變式仿生致動器規格[9] - - - - - - - - - - - 32 表1-3 電極電性分配與致動行為之關係[12] - -- - - - - - - - 32 表 3-1 外框間距h對致動位移及力量的影響實驗參數 - - - - - 33 表 6-1實驗一與實驗二之實驗結果比較 - - - - - - - - - - - 33 圖目錄 圖1-1a 海星狀IPMC致動情形[1] - - - - - - - - - - - - - - 34 圖1-1b 介電EAP致動情形[1] - - - - - - - - - - - - - - - - 34 圖1-2 第一個商業化的EAP產品-機械魚[1] - - - -- - - - - - 34 圖1-3 介電彈性體致動器致動情形示意圖 - - - - - - - - - - 34 圖1-4 預拉伸示意圖 - - - - - - - - - - - - - -- - - - - - 35 圖1-5a 非預應變式圓形致動器原型[7] - - - - - -- - - - - - 35 圖1-5b 非預應變式仿生致動器[7] - - - - - - - - - - - - -35 圖1-6a 摺疊式致動器原型[8] - - - - - - - - - - - - - - - 36 圖1-6b 摺疊式致動器致動情形[8] - - - - - - - -- - - - - - 36 圖1-7 彈簧包捲式致動器外觀及彎曲致動情形[9] - - - - - - - 36 圖1-8 彈簧包捲式致動器構造[9] - - - - - - - - - - - - - - 36 圖1-9 MERobot: 彈簧包捲式致動器應用於六足機械人之足部[9] - - - - - - - - 37 圖1-10 ANTLA原型示意圖[10] - - - - - - - - - - - - - - - 37 圖1-11 UMA構造圖[11] - - - - - - - - - - - - - - - - - - 37 圖1-12a 閥元件type1構造圖[11] - - - - - - - - - - - - 38 圖1-12b 閥元件type1開關示意圖[11] - - - - - - -- - - - - 38 圖1-13 閥元件type2、type3[11] - - - - - - - - - - - - - - 38 圖1-14 閥元件type4[11] - - - - - - - - - - - - - - - - - 38 圖1-15 AMI所發表的氣體壓力感測器[12] - - - - - -- - - - - 39 圖2-1 UMA的高分子膜外型 - - - - - - - - - - - - - - - - - 39 圖2-2 H. R. Choi等人所發表之拮抗式DEA[12] - - - - - - - 39 圖2-3 H. R. Choi等人所發表之拮抗式DEA之 靜力學模型[12] - - - - - - - - - - - - - - - - - - -40 圖2-4 微分元素受力示意圖[12] - - - - - - - - - - - - - - 40 圖2-5 拮抗式致動器的集總模型 (lumped model)[13] - - - - - - - - - - - - - - - - - - - 41 圖2-6 高分子的等效質量分割概念[13] - - - - - - - - - - - 41 圖3-1 UMA製作流程 - - - - - - - - - - - - - - - - - - - - 42 圖3-2 UMA尺寸圖 - - - - - - - - - - - - - - - - - - - - - 42 圖3-3 UMA致動位移量測 - - - - - - - - - - - - - - - - - - 43 圖3-4 UMA致動力量量測 - - - - - - - - - - - - - - - - - - 43 圖3-5直流電壓驅動反應:位移-時間關係- - - - - - - - - - - 43 圖3-6 UMA遲滯迴圈: V1=0 kV;Vp2=4 kV cosine波, f=0.5Hz,5 cycles - - - - - - - - - - - - - - - - - - - - 44 圖3-7 UMA遲滯迴圈: V1=3 kV;Vp2=4 kV cosine波, f=0.5Hz,5 cycles - - - - - - - - - - - - - - - - - - - 44 圖3-8 不同間距的UMA之位移量與電壓關係圖 - - - - - - - - - 44 圖3-9 不同間距的UMA之力量與電壓關係圖 - - - - - - - - - - 44 圖3-10 多層並聯之UMA構造示意圖 - - - - - - - - - - - - - 45 圖3-11多層並聯UMA導線電性分配示意圖 - - - - - - - - - - - 45 圖3-12 雙軸預拉伸及長方形框架 - - - - - - - -- - - - - - 46 圖3-13 塗佈電極後的圓形外框中之高分子膜 - - - - - - - - 46 圖3-14 貼合前之長方形框架中的高分子膜與 圓形外框中之高分子膜 - - - - - - - - -- - - - - - 46 圖3-15製作完成之三層並聯UMA - - - - - - - - - - - - - - - 46 圖3-16 單層與三層並聯UMA致動位移比較 - - - - - - - - - - 47 圖3-17以單層UMA在3千伏電壓驅動時為比較 基準之單層與三層並聯UMA位移性能比較 - - - - - - - 47 圖3-18單層與三層並聯UMA致動力量比較 - - - - - - - - - - - 47 圖4-1電流及位移與時間的關係[6] - - - - - - - - - - - - - 48 圖4-2 Vibration element搭配棘輪機構 [15] - - - - - - - - 48 圖5-1(a) 位移控制實驗架構 - - - - - - - - - -- - - - - - 49圖5-1(b) 位移控制實驗所使用之UMA尺寸 - - - - -- - - - - - 49 圖5-2 調節電壓計算法則 - - - - - - - - - -- - - - - - - - 50 圖5-3 (r, Kp, offset)=(0.5, 15, 3)時調節電壓及 UMA位移與時間關係圖 - - - - - - - - - - - - - - - 50 圖5-4 (r, Kp, offset)=(0.5, 15, 4)時調節電壓及 UMA位移與時間關係圖- - - - - - - - - - - - - - - - 51 圖5-5 (r, Kp, offset)=(0.5, 15, 4.5)時調節電壓 及UMA位移與時間關係圖 - - - - - - - - - - - - - - 51 圖5-6 (r, Kp, offset)=(0.5, 15, 5)時調節電壓及 UMA位移與時間關係圖- - - - - - - - - - - - - - - 52 圖6-1(a) 常關模式(normally close mode)示意圖 - - - - - - 52 圖6-1(b) 常開模式(normally open mode)示意圖 - - - - - - -52 圖6-2 常開型UMA驅動比例閥構造圖 - - - - - - - - - - - - - 53 圖6-3 UMA驅動之常開型閥元件性能量測架構 - - - - - - - - 53 圖6-4(a) 相關零件尺寸圖 - - - - - - - - - - - - - - - - - 54 圖6-4(b) UMA驅動之常開型閥元件性能量測架構 - - - - - - - -54 圖6-5 流量及驅動電壓隨時間之變化 (f=0.05 Hz, A=4 kV, Pin=15.25 kPa, Q0=3 SLPM) - - -- - - 55 圖6-6 流量及驅動電壓隨時間之變化 (f=0.5 Hz, A=4 kV, Pin=15.25 kPa, Q0=3 SLPM) - - - - - - 55 圖6-7 流量及驅動電壓隨時間之變化 (f=1 Hz, A=4 kV, Pin=15.25 kPa, Q0=3 SLPM) - - - - - - - 55 圖6-8 流量及驅動電壓隨時間之變化 (f=2 Hz, A=4 kV, Pin=15.25 kPa, Q0=3 SLPM) - - - - - 56 圖6-9 流量及驅動電壓隨時間之變化 (f=4 Hz, A=4 kV, Pin=15.25 kPa, Q0=3 SLPM) - - - - 56 圖6-10 流量及驅動電壓隨時間之變化 (f=8 Hz, A=4 kV, Pin=15.25 kPa, Q0=3 SLPM) - - - 56 圖6-11 流量及驅動電壓隨時間之變化 (f=0.05 Hz, A=4 kV, Pin=20 kPa, Q0=8 SLPM) - - - - 56 圖6-12 流量及驅動電壓隨時間之變化 ( f = 0.05 Hz, A= 2.5 kV, Pin = 15.25 kPa , Q0 = 3 SLPM ) - - - - - - - - - - - - - - - - - - - - - - - - - 57 圖6-13 流量及驅動電壓隨時間之變化 ( f = 0.05 Hz, A= 2 kV, Pin = 15.25 kPa , Q0 = 3 SLPM ) - - - - - - - - - - - - - - - - - - - - - - - - 57 圖6-14 流量及驅動電壓隨時間之變化 ( f = 0.05 Hz, A= 1.5 kV, Pin = 15.25 kPa , Q0 = 3 SLPM ) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -58 圖6-15 流量及驅動電壓隨時間之變化 ( f = 0.05 Hz, A= 1.5kV, Pin = 15.25 kPa, Q0 = 3 SLPM ) - - - - - - - - - - - - - - - - - - - - - - - - - - - - -58 圖6-16 流量穩定實驗架構圖 - - - - - - - - - -- - - - - - 59 圖6-17 流量穩定實驗之閥元件尺寸 - - - - - - - - - - - - - 59 圖6-18 流量穩定實驗之VR 計算法則 - - - - - - - - - - - - 60 圖6-19 流量穩定實驗結果:實驗一 - - - - - - - - - - - - - 60 圖6-20 流量穩定實驗之穩態誤差:實驗一 - - - - - - - - - - 61 圖6-21 流量穩定實驗之穩態誤差:實驗二 - -- - - - - - - - 61 圖6-22 表6-1參數定義圖解 - - - - - - - - - - - - - - - - 62

    [1] Yoseph Bar-Cohen, ”EAP as Artificial Muscles –
    Progress and Challenges,” Proc. SPIE Smart Structures and Materials 2004 (EAPAD), 5385, 10-16 (2004).

    [2] Shuchi Shoji and Masayoshi Esashi, ”Microflow Devices and Systems,”Journal of Micromechanics and Microengineering,4, 157-171 (1994).

    [3] Ronald Pelrine, Roy Konrbluh, Qibing Pei, Jose
    Joseph, ”High –Speed Electrically Actuated Elastomer
    with Strain Greater than 100%,” Science, 287, 836-839
    (2000).

    [4] Roy Kornbluh, Ronald Pelrine, Jose Joseph, Richard Heydt, Qibing Pei, Seiki Chiba, ”High-Field Electrostriction ofElastomeric Polymer Dielectrics for Actuation,” Proc. SPIE Smart Structures and Materials 1999 (EAPAD), 3669, 149-161 (1999).

    [5] Ronald Pelrine, Roy Kornbluh, Jose Joseph,
    “Electrostriction of Polymer Dielectrics with Compliant Electrodes as A Means of Actuation,” Sensors and
    Actuators, A 64, 77-85 (1998).

    [6] Chritian Blzmacher, James Biggs, Mandayam Srinivasan,
    “Flexible Dielectric Elastomer Actuators for Wearable
    Human-Machine Interfaces,” Proc. SPIE Smart Structures
    and Materials 2006 (EAPAD), 6168, 6168041-12 (2006).

    [7] Kwangmok Jung, Jaedo Nam, Youngkwan Lee, Hyouk Ryeol
    Choi, ”Micro Inchworm Robot Actuated by Artificial Muscle Actuator based on Non-prestrained Dielectric Elastomer," Proc. SPIE Smart Structures and Materials 2004 (EAPAD), 5385, 357-367 (2004).

    [8] F. Carpi and D. De Rosii, ”Contractile Dielectric
    Elastomer Actuator with Folded Shape,” Proc. SPIE Smart Structures and Materials 2006 (EAPAD), 6168, 61680D1-6 (2006).

    [9] Qibing Pei, Marcus Rosenthal, Scott Stanford, Harsha
    Prahlad, Ron Pelrine, ”Multiple-Degrees-of-Freedom
    Electroelastomer Roll Actuators, ”Smart Materials and
    Structures, 13, N86-N92 (2004).

    [10] Hyouk Ryeol Choi, Sungmoo Ryew, Kwangmok Jung, Jaewook Jeon, Hunmo Kim. Jaedo Nam, Atsuo Takanishi, Ryutaro Maeda, Kenji Kaneko, Kazuo Tanie, ”Biomimetic Actuator Based on Dielectric Polymer,” Proc. SPIE Smart
    Structures and Materials 2002 (EAPAD), 4695, 138-149 (2002).

    [11] Jon Heim, “High-Performance Electroactive Polymer
    Transducers, ”United States Patent, US2006/0208610 A1, Sep. 21, 2006

    [12] Marcus Rosenthal, Neville Bonwit, Charle Duncheon, Jon Heim, ”Applications of Dielectric Elastomer EPAM
    Sensors,” Proc. SPIE Smart Structures and Materials 2007
    (EAPAD), 6524 (2007).

    [12] Hyouk Ryeol Choi, Kwangmok Jung, Sungmoo Ryew, Jaedo
    Nam, Jaewook Jeon, Ja Choon Koo, Kazuo Tanie,”
    Biomimetic Soft Actuator: Design, Modeling, Control,
    and Applications,” IEEE/ASME Transactions on
    Mechatronics, 10,581-593 (2005).

    [13] Hyouk Ryeol Choi, Sungmoo Ryew, Kwangmok Jung, Hunmo
    Kim,Jaewook Jeon, Jaedo Nam, ”Soft Actuator for Robotic Applications Based on Dielectric Elastomer: Dynamic
    Analysis and Applications,” Proc. 2002 IEEE Int. Conf.Robotics & Automation, 3218-3223 (2002).

    [14] Roderic S. Lakes, Viscoelastic Solids, (Boca Raton, CRC Press) (1998).

    [15] Masaki Haruna, Kazuki Kubo, Kouji Fukusumi and Tamida, “Development of Soft Actuator: Mechanism with Vibration Element Using Dielectric Elastomer to Generate Large Displacement,” Proc. SPIE Smart Structures and Materials 2007 (EAPAD), 6524, 6524181-10 (2007).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE