簡易檢索 / 詳目顯示

研究生: 何豐儒
Feng-Ju Ho
論文名稱: Promoter Analysis of Beta-conglycinin Genes from Soybean
大豆種子Beta-伴球蛋白基因啟動子活性之分析
指導教授: 林彩雲
Tsai-Yun Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 71
中文關鍵詞: 伴球蛋白啟動子活性
外文關鍵詞: beta-conglycinin, promoter activity
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大豆種子儲存蛋白beta-conglycinin表現在種子發育中後期且具有三個次單位alpha,alpha'和beta。alpha'次單位基因上游-257至-77區域已被報導為種子專一性促進子。這個研究的目的是分離並分析高雄10號大豆儲存蛋白beta-conglycinin的alpha,alpha'和beta次單位啟動子的特性。我們將不同次單位啟動子構築於beta-glucuronidase(GUS)基因之前,並藉由PEG導入DNA的方式暫時性轉殖至大豆原生質體,以GUS表現來定量啟動子的活性。定量分析的結果顯示,在三個啟動子裡,alpha'次單位啟動子具有最高的活性。而一或兩重複alpha'次單位促進子不論正反方向性都具有兩倍促進啟動子活性的效果。此促進子也增加beta次單位啟動子的活性。另一方面,外加穀氨酸或ABA會增加beta次單位啟動子活性。序列分析結果顯示這些次單位啟動子具有多種種子專一性的結合區域,且有六個保守區域。這些啟動子的重組質體轉殖至阿拉伯芥,以轉殖株分析組織專一性表現,在第二代轉殖株,alpha'次單位啟動子表現最高的種子專一性。有趣的是,alpha'次單位啟動子具有最多的種子專一性的結合區域,而alpha次單位啟動子含有較少的種子專一性結合區域表現出較低的活性。我們的結果證實,相較於alpha和beta次單位啟動子alpha'次單位啟動子在種子具有最高的活性。


    The soybean seed storage protein β-conglycinin is comprised of three different subunits alpha, alpha' and beta. Genes encoding the three subunits of β-conglycinin have been reported to express only in seeds during mid to late stages in embryogeny. DNA sequences between -257 and-77 bp of the alpha' subunit gene had been reported to function as a seed-specific transcriptional enhancer. This study aims to characterize the promoters of genes encoding the alpha, alpha' and beta subunits of beta-conglycinin in Kaohsiung 10 soybean. A series of constructs containing different promoters fused to beta-glucuronidase (GUS) reporter gene were generated and introduced into soybean protoplasts using polyethylene glycol-directed DNA delivery for transient GUS assays. Our quantitative analyses showed that the alpha' subunit promoter has the highest activity among the three promoters. A 2-fold enhancement was found when one or two copies of the alpha' enhancer were placed in either orientation in front of the duplicate CaMV35S promoter. The alpha' enhancer also increased the activity of the beta subunit promoter. On the other hand, the activity of the beta subunit promoter was increased by the application of glutamine or ABA. Sequence analyses indicate that these promoters contain several kinds of seed-specific motifs and six conserved regions. The recombinant constructs were transformed into Arabidopsis for analyzing the temporal and tissue-specific expression of the promoters. The T2 transgenic plants carrying the alpha' subunit promoter show high GUS activity in mature seeds, indicating high seed-specificity. Interestingly, the alpha' subunit promoter contains all the motifs that have been reported to be necessary for seed-specific expression while the alpha subunit promoter that contains less seed-specific motifs shows lower seed specificity. Our results confirmed that the alpha' subunit promoter directs higher gene expression in seeds than alpha and beta promoters.

    摘要 ••••••••••••••••••••••••••i Abstract ••••••••••••••••••••••••ii 謝誌••••••••••••••••••••••••••iii Table of Contents •••••••••••••••••••iv List of Tables•••••••••••••••••••••vi List of Figures ••••••••••••••••••••vii List of Appendixes •••••••••••••••••••x Abbreviations••••••••••••••••••••••xi Introduction •••••••••••••••••••••• 1 Materials and Methods ••••••••••••••••••6 1. DNA Ligation, Plasmid Transformation and Preparation, and DNA Sequencing••••••••••••••••••••6 2. Plasmid Constructions•••••••••••••••••8 3. Plant Materials and Growth Conditions•••••••••11 4. PEG-mediated Protoplast Transformation ••••••••11 5. Quantification of RLUC and GUS Activity in Transformed Protoplast••••••••••••••••••••••••13 6. Molecular Analysis of Transgenic Arabidopsis Plants••16 Results •••••••••••••••••••••••••18 1. Plasmid Constructions and Sequence Analyses••••••18 2. Quantitative Activity Analysis of These Subunit Promoters ••••••••••••••••••••••••20 3. Characterization and Molecular Analysis of Transgenic Arabidopsis Plants••••••••••••••••••••22 Discussion •••••••••••••••••••••••25 References••••••••••••••••••••••••29 Tables••••••••••••••••••••••••••37 Figures••••••••••••• ••••••••••••41 Appendixes •••••••••••• •••••••••••69

    1. Allen, R.D., Bernier, F., Lessard, P.A., Beachy, R.N. (1989) Nuclear factors interact with a soybean β-conglycinin enhancer. Plant Cell 1, 623–631.

    2. Awazuhara, M., Kim, H., Goto, D.B., Matsui, A., Hayashi, H., Chino, M., Kim, S.G., Naito, S., Fujiwara, T. (2002) A 235-bp region from a nutritionally regulated soybean seed-specific gene promoter can confer its sulfur and nitrogen response to a constitutive promoter in aerial tissues of Arabidopsis thaliana. Plant Sci. 163, 75–82.

    3. Bray, E.A. and Beachy, R.N. (1985) Regulation by ABA of β-conglycinin expression in cultured developing soybean cotyledons. Plant Physiol. 79, 746-750.

    4. Beachy, R.N., Chen, Z.L., Horsch, R.B., Rogers, S.G., Hoffmann, N.J. and Fraley, R.T. (1985) Accumulation and assembly of soybean β-conglycinin in seeds of transformed petunia plants. EMBO J. 4, 3047–3053.

    5. Barker, S.J, Harada, J.J and Goldberg, R.B. (1988) Cellular localization of soybean storage protein mRNA in transformed tobacco seeds. Proc. Natl. Acad. Sci. 85, 458–462.

    6. Bäumlein H., Nagy I., Villarroel R., Inzé D. and Wobus U. (1992) Cis-analysis of a seed protein gene promoter: the conservative RY repeat CATGCATG within the legumin box is essential for tissue-specific expression of a legumin gene. Plant J. 2, 233–239.

    7. Chamberland, S., Daigle, N. and Bernier, F. (1992) The legumin boxes and the 3′ part of a soybean β-conglycinin promoter are involved in seed gene expression in transgenic tobacco plants. Plant Mol. Biol. 19, 937–949.

    8. Caiyin, Q., Li, M., Wei, D., Cai, Y. and Xing, L. (2007) Isolation and sequencing analysis on the seed-specific promoter from soybean. Agric. China 1, 17-23.

    9. Chen, Z.L., Naito, S., Nakamura, I. and Beachy, R.N. (1989) Regulated expression of genes encoding soybean beta-conglycinins in transgenic plants. Dev. Genet. 10, 112–122.

    10. Chen, Z.L., Pan, N.S. and Beachy, R.N. (1988) A DNA sequence element that confers seed-specific enhancement to a constitutive promoter. EMBO J. 7, 297-302.

    11. Chen, Z.L., Schuler, M.A. and Beachy, R.N. (1986) Functional analysis of regulatory elements in a plant embryo-specific gene. Proc. Natl. Acad. Sci. 83, 8560-8564.

    12. Dickinson, C.D., Evans, R.P. and Nielsen, N.C. (1988) RY repeats are conserved in the 5□-flanking regions of legume seed-protein genes. Nucl. Acids Res. 16, 371.

    13. Doyle, J.J., Schuler, M.A., Godette, W.D., Zenger, V. and Beachy, R.N. (1986) The glycosylated seed storage proteins of Glycine max and Phaseolus vulgaris: structural homologies of genes and proteins. J. Biol. Chem. 261, 9228-9238.

    14. Ezcurra, I., Ellerstrom, M., Wycliffe, P., Stalberg, K. and Rask, L. (1999) Interaction between composite elements in the napA promoter: both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression. Plant Mol. Biol. 40, 699–709.

    15. Ellerstrom, M., Stalberg, K., Ezcurra, I. and Rask, L. (1996) Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription. Plant Mol. Biol. 32, 1019–1027.

    16. Fujiwara, T. and Beachy, R.N. (1993) Expression of soybean seed storage protein genes in transgenic plants; their effects on expression of a neighboring gene and position dependency. Plant Cell Physiol. 34, 13-20.

    17. Fujiwara, T. and Beachy, R.N. (1994) Tissue-specific and temporal regulation of a β-conglycinin gene: roles of the RY repeat and other cis-acting elements. Plant Mol. Biol. 24, 261–272.

    18. Fujiwara, T., Hirai, M.Y., Chino, M., Komeda, Y. and Naito, S. (1992) Effects of sulfur nutrition on expression of the soybean seed storage protein genes in transgenic petunia. Plant Physiol. 99, 1263–268.

    19. Fowler, S. and Thomashow, M.F. (2002) Arabidopsis Transcriptome Profiling Indicates That Multiple Regulatory Pathways Are Activated during Cold Acclimation in Addition to the CBF Cold Response Pathway. Plant Cell 14, 1675-1690.

    20.Grace, M.L., Chandrasekharan, M.B., Hall, T.C. and Crowe, A.J. (2004) Sequence and spacing of TATA box elements are critical for accurate initiation from the β-phaseolin promoter. J. Biol. Chem. 279, 8102–8110.

    21.Gayler, K.R. and Sykes,G.E. (1981) β-conglycinins in developing soybean seeds. Plant Physiol. 67, 958-961.
    22. Gayler, K.R. and Sykes,G.E. (1985) Effects of nutritional stress on the storage proteins of soybeans. Plant Physiol. 78, 582-585.

    23.Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D. and Thomashow, M.F. (2000) Overexpression of the Arabidopsis CBF3 Transcriptional Activator Mimics Multiple Biochemical Changes Associated with Cold Acclimation. Plant Physiol. 124, 1854-1865.

    24. Harada, J.J., Barker, S.J. and Goldberg, R.B. (1989) Soybean □-conglycinin genes are clustered in several DNA regions and are regulated by transcriptional and posttranscriptional processes. Plant Cell 1, 415-425.

    25. Hirai, M.Y., Fujiwara, T., Goto, K., Komeda, Y., Chino, M., and Naito, S. (1994) Differential regulation of soybean seed storage protein gene promoter-GUS fusions by exogenously applied methionine in transgenic Arabidopsis thaliana. Plant Cell Physiol. 35, 927–934.

    26. Hayashi, M., Harada, K., Fujiwara, T. and Kitamura, K. (1998) Characterization of a 7S globulin-deficient mutant of soybean (Glycine max (L.) Merrill). Mol. Gen. Genet. 258, 208-214.

    27. Hernández-Sebastià, C., Marsolais, F., Saravitz, C., Israel, D., Dewey, R.E. and Huber, S.C. (2005) Free amino acid profiles suggest a possible role for asparagine in the control of storage product accumulation in developing seeds of low and high protein soybean lines. J. Exp. Bot. 56, 1951-1963.

    28. Higgins, T.J.V., Newbigin, E.J., Spencer, D., Llewellyn, D.J. and Craig, S. (1988) The sequence of a pea vicilin gene and its expression in transgenic tobacco plants. Plant Mol. Biol. 11, 683-695.

    29. Haga, K. I. and Sodek, L. (1987) Utilization of nitrogen sources by immature soybean cotyledons in culture. Ann. Bot. 59, 597–601.

    30. Hattori, T., Totsuka, M., Hobo, T., Kagaya, Y. and Yamamoto-Toyoda, A. (2002) Experimentally determined sequence requirement of ACGT-containing abscisic acid response element. Plant Cell Physiol. 43, 136– 140.

    31. Holowach, L.P., Thompson, J.F., Madison, J.T. (1984) Storage protein composition of soybean cotyledons grown in vitro in media of various sulfate concentrations in the presence and absence of exogenous L-methionine. Plant Physiol. 74, 584–589.

    32.Krishnan, H.B., Bennett, J.O., Kim, W.S., Krishnan, A.H., Mawhinney, T.P. (2005) Nitrogen lowers the sulfur amino acid content of soybean (Glycine max [L.] Merr.) by regulating the accumulation of Bowman-Birk protease inhibitor. J. Agric. Food Chem. 53, 6347-6354.

    33. Kawagoe, Y., Campbell, B. R., and Murai, N. (1994) Synergism between CACGTG (G-box) and CACCTG cis-elements is required for activation of the bean seed storage protein β-phaseolin gene. Plant J. 5, 885–890.

    34. Kim, H., Hirai, M. Y., Hayashi, H., Chino, M., Naito, S., and Fujiwara, T. (1999) Role of O-acetyl-L-serine in the coordinated regulation of the expression of a soybean seed storage-protein gene by sulfur and nitrogen nutrition. Planta, 209, 282-289.

    35. Kinney, A.J., Jung, R., Hermann, E.M. (2001) Cosuppression of the alpha subunits of β-conglycinin in transgenic soybean seeds induces the formation of endoplasmic reticulum-derived protein bodies. Plant Cell 13, 1165–1178.

    36. Lessard, P.A., Allen, R.D., Bernier, F., Crispino, J.D., Fujiwara, T., Beachy, R.N. (1991) Multiple nuclear factors interact with upstream sequences of differentially regulated β-conglycinin genes. Plant Mol. Biol. 16, 397–413.

    37. Lessard, P.A., Allen, R.D., Bernier, F., Fujiwara, T. and Beachy, R.N. (1993) Upstream regulatory sequences from two β-conglycinin genes. Plant Mol. Biol. 22, 873–885.

    38. Lee, P., Hsing, Y., Chow, T. (2000) Promoter activity of a soybean gene encoding a seed maturation protein, GmPM9. Bot. Bull. Acad. Sin. 41, 175–182.

    39. Ladin, B.F., Tierney, M.L., Meinke, D.W., Hosángadi, P., Veith, M. and Beachy, R.N. (1987) Developmental regulation of β-Conglycinin in soybean axes and cotyledons. Plant Physiol. 84, 35-41.

    40. Li, H.G., Wang, L., Zhang, Y.S., Lin, X.D., Liao, B., Yan Y.S., and Huang, S.Z. (2005) Cloning and sequencing of the gene Ahy-β encoding a subunit of peanut conarachin. Plant Sci. 168, 1387-1392.

    41. Meinke, D.W., Chen, J. and Beachy, R.N. (1981) Expression of storage-protein genes during soybean seed development. Planta 153,130-139.

    42. Miao, Y.S., Jiang, L.W. (2007) Transient expression of fluorescent fusion proteins in protoplasts of suspension cultured cells. Nature Protocol 2, 2348-2353.

    43. Mahesh, B.C., Kenneth, J.B. and Timothy C.H. (2003) Module-specific regulation of the β-phaseolin promoter during embryogenesis. Plant J. 33, 853–866.

    44. Mandal, S. and Mandal, R.K. (2000) Seed storage proteins and approaches for improvement of their nutritional quality by genetic engineering. Curr. Sci. 79, 576-689.

    45. Naito, S., Dube, P.H. and Beachy, R.N. (1988) Differential expression of conglycinin □□ and β subunit genes in transgenic plants. Plant Mol. Biol. 11, 109-123.

    46. Naito, S., Hirai, M. Y., Chino, M. and Komeda, Y. (1994) Expression of a Soybean (Glycine max [L.] Merr.) Seed Storage Protein Gene in Transgenic Arabidopsis thaliana and Its Response to Nutritional Stress and to Abscisic Acid Mutations. Plant Physiol. 104, 497-503.

    47. Ohkama, N., Goto, D.B., Fujiwara, T. and Naito, S. (2002) Differential tissue-specific response to sulfate and methionine of a soybean seed storage protein promoter region in transgenic Arabidopsis. Plant Cell Physiol. 43, 1266–75.

    48. Odell, J.T., Hoopes, J.L. and Vermerris, W. (1994) Seed-specific gene activation mediated by the Cre/lox site-specific recombination system. Plant Physiol. 106, 447–458.

    49. Reidt, W., Wohlfarth, T., Czihal, M.E., Tewes, A., Ezcurra, I., Rask, L. and Bäumlein, H. (2000) Gene regulation during late embryogenesis: the RY motif of maturation-specific gene promoters is a direct target of the FUS3 gene product. Plant J. 21, 401–408.

    50. Schlereth, A., Becker, C., Horstmann, C., Tiedemann, J.and Muntz, K. (2000) Comparison of globulin mobilization and cysteine proteinases in embryonic axes and cotyledons during germination and seedling growth of vetch (Vicia sativa L.). J. Exp. Bot. 51, 1423-1433.

    51. Thomas, T.L. (1993) Gene expression during plant embryogenesis and germination: an overview. Plant Cell 5, 1401-1410.

    52. Thirkettle-Watts, D., McCabe, T.C., Clifton, R., Moore, C., Finnegan, P.M., Day, D.A. and Whelan, J. (2003) Analysis of the Alternative Oxidase Promoters from Soybean. Plant Physiol. 133, 1158-1169.

    53. Walling, L., Drews, G.N. and Goldberg, R.B. (1986) Transcriptional and post-transcriptional regulation of soybean seed protein mRNA levels. Proc. Natl. Acad. Sci. 83, 2123–2127.

    54. Williams, M.E., Foster, R. and Chua, N.H. (1992) Sequences flanking the hexameric G-box core CACGTG affect the specificity of protein binding. Plant Cell. 4, 485–496.

    55. Yoo, S.D., Cho, Y.H., Sheen, J. (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocol 2, 1565-1572

    56. Yoshino, M., Kanazawa, A., Tsutsumi, K.I., Nakamura, I., Shimamoto, Y. (2001) Structure and characterization of the gene encoding alpha subunit of soybean beta-conglycinin. Genes Genet. Syst. 76, 99–105.

    57. Yoshino, M., Nagamatsu, A., Tsutsumi, K.I. and Kanazawa, A. (2006) The regulatory function of the upstream sequence of the β-conglycinin α subunit gene in seed-specific transcription is associated with the presence of the RY sequence. Genes Genet. Syst. 81, 135-141.

    58. Zakharov, A., Giersberg, M., Hosein, F and Melzer, M. (2004) Seed-specific promoters direct gene expression in non-seed tissue. J. Exp. Bot. 55, 1463-1471.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE