研究生: |
曾聖翔 Tseng, Sheng-Hsiang |
---|---|
論文名稱: |
應用晶圓級CMOS MEMS製程於微機電元件與電路之開發 Development of MEMS Devices and Circuits by Using Wafer-Level CMOS MEMS Processes |
指導教授: |
盧向成
Lu, Shiang-Cheng |
口試委員: |
楊燿州
方維倫 鄭裕庭 盧向成 邱一 |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 130 |
中文關鍵詞: | 金氧半導體微機電 、微機電 、加速度計 、共振器 、振盪器 、電感 |
外文關鍵詞: | CMOS MEMS, MEMS, accelerometer, resonator, oscillator, inductor |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要利用互補型金氧半導體微機電系統技術(CMOS MEMS)提出了晶圓級(wafer-level)的製程平台方案與設計方法,該方法可完全相容於標準的金氧半導體之製程並可具備量產的潛力。
利用上述製程平台,本論文實現了一個CMOS MEMS電容式加速度計單晶片。其感測元件在垂直方向因殘餘應力造成之形變量低於0.2 μm。電路採用電容式切換式架構以達到低功率消耗與低直流漂移輸出偏壓。在 ±6 G之量測範圍內,加速度計的靈敏度為191 mV/G,非線性度為1.07 %。在100-Hz 1-G正弦驅動加速度力作用下,其量測噪聲雜訊約為354 μG/Hz1/2。在27 °C下,量測之輸出漂移電壓約為100 mV。在85°C溫度內,輸入0 G時之加速度計輸出溫度係數約為0.94 mV/°C。
本論文亦實現了一個CMOS MEMS電容式共振器單晶片。該共振器的振動頻率為116 kHz。本共振器在60V操作電壓下,其品質因子在常壓(1 atm)與真空(0.07 Torr)下量測分別約為332與930。該共振器搭配外部運算放大器進行相位與增益的補償,並在電路板上實現了CMOS MEMS的振盪器,該振盪頻率為116 kHz,1-kHz的相位雜訊則為 -104 dBc/Hz。此外,我們也利用微機電後製程設計製作了高品質因子的CMOS MEMS電感元件,其品質因子相較CMOS電感元件提升了88%。我們將該CMOS MEMS電感元件應用於一5.8 GHz壓控振盪器內以取代傳統的CMOS電感元件,其電路之相位雜訊可提升約5dB。
This thesis proposes wafer-level complementary metal oxide semiconductor (CMOS) micro-electro-mechanical systems (MEMS) processes whose steps are fully compatible with standard CMOS process and have the potential for mass production.
A monolithic capacitive accelerometer is proposed by using the wafer-level CMOS MEMS process. The out-of-plane deflection resulted from the vertical stress gradient over the whole device is under 0.2 μm. The sensing circuit topology adopts switched capacitors for achieving a low power consumption and a low output offset voltage. With the sensing range of ±6 G, the sensitivity of the accelerometer is 191 mV/G, and the nonlinearity is 1.07 %. The measured output noise floor is 354 μG/Hz1/2. The measured output offset voltage is about 100 mV at 27 °C, and the zero-G temperature coefficient of the accelerometer output is 0.94 mV°C−1 below 85 °C.
A monolithic capacitive CMOS MEMS resonator is also proposed in this thesis. The measured resonator frequency is 116 kHz with a quality factor of 332 at 1 atm. The quality factor is raised to 930 at 0.07 Torr with a DC bias of 60 V. A CMOS MEMS oscillator is implemented with gain and phase compensations using an off-chip op-amp in printed circuit board. The oscillation frequency is 116 kHz and the phase noise at a 1-kHz offset is -104 dBc/Hz. In addition, a high quality-factor CMOS MEMS inductor is also fabricated with the post-CMOS MEMS process, which shows an improvement of 88% comparing to a CMOS inductor. The CMOS MEMS inductor is implemented in a 5.8 GHz voltage controlled oscillator, which improves 5 dB in phase noise.
[1] G. Q. Zhang, A. J. van Roosmalen, More than Moore: Creating High Value Micro/Nanoelectronics Systems, Springer, 2009.
[2] S. J. Sherman, W. K. Tsang, T. A. Core, R. S. Payne, D. E. Quinn, K. H.-L. Chau, J. A. Farash and S. K. Baum, “A low cost monolithic accelerometer product/technology update,” Proc. IEEE Int. Electron Devices Meeting (IEDM), pp. 501-504, 1992.
[3] B. E. Boser and R. T. Howe, “Surface micromachined accelerometer,” Proc. IEEE CICC, pp. 337-344, 1995.
[4] J. H. Smith, S. Montague, J. J. Sniegowski, J. R. Murray and P. J. McWhorter, “Embedded micromechanical devices for the monolithic integration of MEMS with CMOS, “Proc. IEEE Int. Electron Devices Meeting (IEDM), pp. 609-612, 1995.
[5] J. Yasaitis, et al., “A modular process for integrating thick polysislicon MEMS devices with sub-micro CMOS,” Proc. SPIE, pp. 145-154, 2003.
[6] A. A. Seshia, M. Palaniapan, T. A. Roessig, R. T. How, R. W. Gooch, T. R. Schimert and S. Montague, “A vacuum packaged surface micromachined resonant accelerometer,” IEEE J. Microelectromechanical Systems, vol. 11, pp. 784-493, 2002.
[7] M. Offenberg, F. Larmer, B. Elsner, H. Munzel and W. Riethmuller, “Novel process for a monolithic integrated accelerometer,” Conf. on Solid-State Sensors and Actuators, pp. 589-592, 1995.
[8] H. Luo, G. Zhang, R. Carley and G. K. Fedder, “A post-CMOS micromachined lateral accelerometer,” IEEE J. Microelectromechanical Systems, vol. 11, pp. 188-195, 2002.
[9] J. F. Wu, G. K. Fedder and L. R. Carley, “A low-noise low-offset capacitive sensing amplifier for 1 50-μG/√Hz monolithic CMOS MEMS accelerometer, IEEE J. Solid-State Circuits, vol. 39, pp. 722-730, 2004.
[10] J. Verd, A. Uranga, J. Teva, J. L. Lopez, F. Torres, J. Esteve, G. Abadal, F. Perez-Murano and N. Barniol, “Integrated CMOS-MEMS with on-chip readout electronics for high-frequency applications,” IEEE Electron Device Letters, vol. 27, pp. 495-497, 2006.
[11] J. L. Lopez, J. Verd, J. Teva, G. Murillo, J. Giner, F. Torres, A. Uranga, G. Abadal and N. Barniol, “Integration of RF-MEMS resonators on submicrometric commercial CMOS technologies,” J. Micromech. Microeng., vol. 19, pp. 1-10, 2009.
[12] J. Verd, M. Sansa, A. Uranga, C. Pey, G. Abadal, F. Perez-Murano and N. Barniol, “Monolithic CMOS-MEMS oscillators with micro-degree temperature resolution in air conditions,” IEEE Conf. Transducers, pp. 2429-2432, 2009.
[13] C. Hagleitner, A. Hierlemann, D. Lange, A. Kummer, N. Kerness, O. Brand and H. Baltes, “Smart single-chip gas sensor microsystem,” Nature, vol. 414, pp.293-296, 2001.
[14] T. Boltshauser and H. Baltes, “Capacitive humidity sensors in SACMOS technology with moisture absorbing photosensitive polyimide,” Sensors and Actuators A, 25-27, pp. 509-512, 1991.
[15] B. V. Amini and F. Ayazi, “A 2.5-V 14-bit ΣΔ CMOS SOI capacitive accelerometer,” IEEE J. Solid-State Circuits, vol. 39, pp. 2467-2476, 2004.
[16] J. Chae, H. Kulah, and K. Najafi, “An in-plane high-sensitivity, low-noise micro-g silicon accelerometer with CMOS readout circuitry,” IEEE J. Microelectromechanical systems, vol. 13, pp. 628-635, 2004.
[17] L. Spangler and C. J. Kemp, “Integrated silicon automotive accelerometer,” IEEE Conf. Transducers, pp. 585-588, 1995.
[18] R. Reichenbach, D. Schubert and G. Gerlach, “Micromechanical triaxial acceleration sensor for automotive applications,” IEEE Conf. Transducers, pp. 77-80, 2003.
[19] S. A. Bhave, J. I. Seeger, X. Jiang, B. E. Boser, R. T. Howe and J. Yasaitis, “An integrated, vertical-drive, in-plane-sense microgyroscope,” IEEE Conf. Transducers, pp. 171-174, 2003.
[20] M. W. Jude, “Evolution of integrated inertial MEMS technology,” Proc. Solid-State Sensor, Actuator and Microsystem Workshop, pp. 27-32, 2004.
[21] J. M. Bustillo, G. K. Fedder, C. T.-C. Nguyen and R. T. Howe, “Process technology for the modular integration of CMOS and polysilicon microstructures,” Microsystem Technologies, vol. 1, pp. 130-141, 1994.
[22] S. Sedky, A. Witvrouw, H. Bender, K. Baert, “Experimental determination of the maximum post-process annealing temperature for standard CMOS wafers,” IEEE Trans. Electron Devices, vo. 48, pp. 377-385, 2001.
[23] P. F. V. Kessel, L. J. Hornbeck, R. E. Meier, M. R. Douglass, “A MEMS-based projection display,” IEEE Proceeding, vol. 86, pp. 1686-1704, 1998.
[24] L. J. Hornbeck, “Digital light processing for high-brightness, high-resolution applications,” Conf. SPIE, vol. 3013, pp. 27-40, 1997.
[25] H. Xie, G. K. Fedder, “A CMOS-MEMS lateral-axis gyroscope,” IEEE Conf. MEMS, pp. 162-165, 2001.
[26] H. Luo, X. Zhu, H. Lakdawala, L. R. Carley and G. K. Fedder, “A Copper CMOS-MEMS z-axis gyroscope, “ IEEE Conf. MEMS, pp. 631- 634, 2001.
[27] G. K. Fedder, S. Santhanam, M. L. Reed, S. C. Eagle, D. F. Guillou, M. S. C. Lu, L. R. Carley, “ Laminated high-aspect-ratio microstructures in a conventional CMOS process,” Sensors and Actuators A, vol. A57, pp. 13-18, 1996.
[28] M. S. C. Lu and G. K. Fedder, “Position control of parallel-plate microactuators for probe-based data storage,” IEEE J. Microelectromechanical Systems, vol.13, pp. 754-769, 2004.
[29] F. Y. Xiao, Y. Z. Juang and C. F. Chiu, “CMOS-MEMS process, “United States Patent,” no. 7435612B2, 2008.
[30] S. H. Tseng, Y. J. Hung, Y. Z. Juang and M. S. C. Lu, “A 5.8-GHz VCO with CMOS-compatible MEMS inductors,” Sensors and Actuators A, vol. 139, pp. 187-193, 2007.
[31] S. H. Tseng, C. L. Fang, P. C. Wu, Y. Z. Juang and M. S. C. Lu, “A CMOS MEMS thermal sensor with high frequency output,” IEEE Conf. Sensors, pp. 387-390, 2008.
[32] S. H. Tseng, M. S. C. Lu, Y. J. Hung and Y. Z. Juang, “High-Q CMOS MEMS resonator oscillator fabricated in a MPW batch process,” Conf. Eurosensors, Austria, 2010.
[33] H. C. Li, S. H. Tseng and M. S. C. Lu, “Study of CMOS micromachined self-oscillating loop utilizing a phase-locked loop driving circuit,” J. Micromech. and Microeng., vol. 22, no. 5, 055024, 2012.
[34] S. H. Tseng, M. S. C. Lu, P. C. Wu, Y. C. Teng, H. H. Tsai and Y. Z. Juang, “Implementation of a monolithic capacitive accelerometer in a wafer-level 0.18-μm CMOS MEMS process,” J. Micromech. and Microeng., vol. 22, no. 5, 055010, 2012.
[35] K. Funk, H. Emmerich, A. Schilp, M. Offenberg, R. Neul and F. Larmer, “A surface micromachined silicon gyroscope using a thick polysilicon layer,” IEEE Conf. MEMS, pp. 57-60, 1999.
[36] H. Qu and H. Xie, “Process development for CMOS-MEMS sensors with robust electrically isolated bulk silicon microstructures,” IEEE J. Micro-electro- mechanical Systems, vol. 16, pp. 1152-1161, 2007.
[37] H. Qu, D. Fang and H. Xie, “A single-crystal silicon 3-axis CMOS-MEMS accelerometer,” IEEE Conf. Sensors, pp. 661-664, 2004.
[38] Y. C. Liu, M. H. Tsai, T. L. Tang and W. Fang, “Post-CMOS selective electroplating technique for the improvement for CMOS-MEMS accelerometer,” J. Micromech. Microeng., vol. 21, 105005, 2011.
[39] R. H. Olsson, E. Wojciechowski, M. S. Backer, M. R. Tuck and J. G. Fleming, “Post-CMOS-compatible aluminum nitride resonator MEMS accelerometer,” IEEE J. Microelectromechical Systems, vol. 3, pp. 671-678, 2009.
[40] Russell F. Colton, “Piezoresistive accelerometer,” United States Patent, no. 4430895, 1984.
[41] L. M. Roylance and J. A. Angell, “A batch-fabricated silicon accelerometer,” IEEE Trans. Electron Devices, vol. ED-26, pp.1911-1917, Dec. 1979.
[42] H. Seidei, U. Fritsch, R. Gottinger, J. Schalk, J. Walter, K. Ambaum, “Piezoresistive silicon accelerometer with monolithically integrated CMOS circuitry,” Conf. Solid-State Sensors and Actuators (Transducers), pp. 597-600, 1995.
[43] R. Hiratsuka, D. C. van Duyn, T. Otraedian, and P. de Vries, “A novel accelerometer based on a silicon thermopile,” Conf. Solid-State Sensors and Actuators (Transducers), 1991, pp. 420-423.
[44] A. M. Leung, J. Jones, E. Czyzewska, J. Chen and B. Woods, “Micromachined accelerometer based on convection heat transfer,” Proc. IEEE Micro Electro Mechanical Systems Workshop (MEMS’98), 1998, pp. 627-630.
[45] W. Fang and J. A. Wickert, “Comments on measuring thin-film stress using bi-layer micromachined beams,” J. Micromech. Microeng., vol. 5, pp. 276-281, 1995.
[46] W. Fang and J. A. Wickert, “Determining mean and gradient residual stresses in thin films using micromachined cantilevers,” J. Micromech. Microeng., vol. 6, pp. 301-309, 1996.
[47] S. D. Senturia, Microsystem design, Dordrecht: Kluwer pp. 222-226.
[48] Coventor Inc, CosolveEM Toolbox Rev.A, 2010.
[49] T. B. Gabrielson, “Mechanical-thermal noise in micromachined acoustic and vibration sensors,” IEEE Trans. Electron Devices, vol. 40, pp. 903-909, 1993.
[50] B. E. Boser and R. T. Howe, “Surface micromachined accelerometer,” IEEE J. of Solid-State Circuits, vol. 31, pp. 366-375, 1996.
[51] W. Kuehnel, “Modeling of the mechanical behavior of a differential capacitor acceleration sensor,” Sensors and Actuators A. vol. A48, pp.101-108, May 1995.
[52] M. A. Lemkin and B. E. Boser, “A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics,” IEEE J. of Solid-State Circuits, vol. 34, pp. 456-468, 1999.
[53] Kulah H, Chae J, Yazdi N and Najafi K, “Noise analysis and characterization of a sigma-delta capacitive microaccelerometer,” IEEE J. of Solid-State Circuits, vol. 41, pp. 352-361, 2006.
[54] Lemkin M A, “Microaccelerometer design with digital feedback control,” PhD Dissertation, University of California, Berkeley, 1997.
[55] Xie H and Fedder G K, “Vertical comb-finger capacitive actuation and sensing for CMOS-MEMS,” Sensors and Actuators A vol. 95, pp. 212-221, 2002.
[56] Freescale semiconductor Inc. 2007 Accelerometer terminology guide Rev. 0
[57] Qu H, Fang D and Xie H, “A monolithic CMOS-MEMS 3-axis accelerometer with a low-noise, low power dual-chopper amplifier,” IEEE J. Sensors, vol. 8, pp. 1511-1518, 2008.
[58] Sun C M, Tsai M H, Liu Y C and Fang W, “Implementation of a monolithic single proof-mass tri-axis accelerometer using CMOS-MEMS technique,” IEEE Tran. Electron Devices, vol. 57, pp. 1670-1679, 2010.
[59] Analog Devices Inc. 2009 ADXL335 small low power 3 axis ±3g accelerometer Datasheet Rev. B
[60] Freescale Semiconductor Inc. 2010 ±6g two axis low-g micromachined accelerometer Datasheet Rev. 0
[61] T. P. Burg, A. R. Mirza, N. Milovic, C. H. Tsau, G. A. Popescu, J. S. Foster and S. R. Manalis, “Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection,” IEEE J. Microelectromechical Systems, vol. 15, pp. 1466-1476, 2006.
[62] K. Jensen, K. Kim and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nature Nanotechnology, vol. 3, pp. 533-537, 2008.
[63] S. X. P. Su, H. S. Yang and A. M. Agogino, “A resonant accelerometer with two-stage microleverage mechanisms fabricated by SOI-MEMS technology,” IEEE J. Sensors, vol. 5, pp. 1214-1223, 2005.
[64] R. T. Howe and S. C. Chang “Resonant accelerometer,” United States Patent, no. 4851080, 1989.
[65] S. E. Alper, Y. Temiz and T. Akin, “A compact angular rate sensor system using a fully decoupled silicon-on-glass MEMS gyroscope,” IEEE J. Microelectromechical Systems, vol. 17, pp. 1418-1429, 2008.
[66] A. K. Shkel, C. Acar and C. Painter, “Two type of micromachined vibratory gyroscopes,” IEEE Conf. Sensors, pp. 531-536, 2005.
[67] M. S. Kranz and G. K. Fedder, “Micromechanical vibratory rate gyroscopes fabricated in conventional CMOS,” Symp. Gyro Technology, pp. 30-38, 1997.
[68] M. A. Abdelmoneum, M. U. Demirci, Y. W. Lin and C. T. C. Nguyen, “Location-dependent frequency tuning of vibrating micromechanical resonators via laser trimming,” IEEE Int. Ultrasonics, Ferroelectrics, and Frequency Control, pp. 24-27, 2004.
[69] W. C. Tang, T. C. H. Nguyen and R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Sensors and Actuators A, vol. 20, pp. 25-32, 1989.
[70] C.-T. C. Nguyen and R. T. Howe, “CMOS micromechanical resonator oscillator,” IEEE Int. Electron Devices Meeting, pp. 199-202, 1993.
[71] F. D. Bannon III, J. R. Clark and C. T.-C. Nguyen, “High frequency micromechanical filters,” IEEE J. Solid-State Circuits, vol. 35, no. 4, pp. 512-526, 2000.
[72] K. Wang, A. C. Wong and C. T.-C. Nguyen, “VHF free-free beam high-Q micromechanical resonators,” IEEE J. Microelectromechical Systems, vol. 9, no. 3, pp. 347-360, 2000.
[73] J. Wang, Z. Ren and C. T.-C. Nguyen, “1.156-GHz self-aligned vibrating micromechanical disk resonator,” IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, vol. 51, no. 12, pp. 1607-1628, 2004.
[74] S. S. Li, Y. W. Lin, Y. Xie, Z. Ren and C. T.-C. Nguyen, “Micormechanical hollow-disk ring resonators,” IEEE Conf. MEMS, pp. 821-824, 2004.
[75] J. Teva, G. Abadal, A. Uranga, J. Verd, F. Torres, J. L. Lopez, J. Esteve, F. P. Murano and N. Barniol, “VHF CMOS-MEMS resonator monolithically integrated in a standard 0.35μm CMOS technology, IEEE Conf. MEMS, pp. 779-782, 2007.
[76] J. L. Lopez, J. Verd, A. Uranga, G. Murillo, J. Giner, E. Marigo, F. Torres, G. Abadal and N. Barniol, “VHF band-pass filter based on a single CMOS-MEMS double-ended tuning fork resonator,” Conf. Eurosensors, pp. 1131-1134, 2009.
[77] W. C. Chen, W. Fang and S. S. Li, “A generalized CMOS-MEMS platform for micromechanical resonators monolithically integrated with circuits,” J. Micromech. Microeng., vol. 21, pp. 1-15, 2011.
[78] B. Razavi, “A study of phase noise in CMOS oscillator,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 331-343, 1996.
[79] H. Hosaka, K. Itao and S. Kurada, “Damping characteristics of beam-shaped micro-oscillator,” Sensors and Actuators A, vol. 49, pp. 87-95, 1995.
[80] J. Yang, T. Ono and M. Esashi, “Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers,” Applied Physics Letters, vol. 77, pp. 3860-3862, 2000.
[81] V. T. Srikar and S. D. Sentura, “Thermoelastic damping in fine-grained polysilicon flexural beam resonators,” IEEE J. Microelectromechical Systems, vol. 11, pp. 499-504, 2002.
[82] W. T. Hsu, J. R. Clark and C. T. C. Nguyen, “Q-optimized lateral free-free beam micromechanical resonators,” IEEE Conf. Transducers, pp. 1110-1113, 2001.
[83] C. T. C. Nguyen and R. T. Howe, “An integrated CMOS micromechanical resonator high-Q oscillator,” IEEE J. Solid-State Circuits, vol. 34, pp. 440-455, 1999.
[84] H. C. Li, S. H. Tseng, P. C. Huang and M. S. C. Lu, “Study of CMOS micromachined self-oscillating loop utilizing a phase-locked loop driving circuit,” J. Micromech. Microeng., vol. 22, 055024, 2012.
[85] G. Y. Chen, T. Thundat, E. A. Wachter and R. J. Warmack, “Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers,” J. applied physics, vol. 77, no. 8, pp. 3618-3622, 1995.
[86] W. C. Chen, W. Fang and S. S. Li, “Quasi-linear frequency tuning for CMOS-MEMS resonators,” IEEE Conf. MEMS, pp. 784-787, 2011.
[87] Y. H. Cho, A. P. Pisano and R. T. Howe, “Viscous damping model for laterally oscillating microstructures,” IEEE J. Microelectromechical Systems, vol. 3, pp. 81-87, 1994.
[88] M. A. Hopcroft, M. Agarwal, K. K. Park, B. Kim, C. M. Jha, R. N. Candler, G. Yama, B. Murmann and T. W. Kenny, “Temperature compensation of a MEMS resonator using quality factor as a thermometer,” IEEE Con. MEMS, pp. 222-225, 2006.
[89] B. Kim, M. A. Hopcroft, R. N. Candler, C. M. Jha, M. Agarwal, R. Melamud, S. A. Chandorkar, G. Yama and T. W. Kenny, “Temperature dependence of quality factor in MEMS resonators,” IEEE J. Microelectromechical Systems, vol. 17, no. 3, pp. 755-766, 2008.
[90] Y. J. Kim, G. Mark and Allen, “Surface micromachined solenoid inductors for high frequency applications,” IEEE Trans. Components Packaging Manuf. Technol., vol. 21, pp. 26-33, 1998.
[91] J. L. Andrew Yeh, H. Jiang, H. P. Neves and N. C. Tien, “Copper-encapsulated silicon micromachined structures,” IEEE J. Microelectromechical Systems, vol. 9, pp. 281-287, 2000.
[92] C. L. Chau, D. K. Fork, K. Van Schuylenbergh and J. P. Lu, “Out-of-plane high-Q inductors on low-resistance silicon,” IEEE J. Microelectromechical Systems, vol. 12, pp. 989-995, 2003.
[93] B. Razavi, Design of Analog CMOS integrated circuits, McGraw-Hill, 2003.
[94] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 179-194, 1998.
[95] S. G. Lee, J. T. Lee, J. K. Choi,, “High-Q poly-to-poly capacitor for rf integrated circuits,” IEEE Electr. Lett., vol. 37, pp. 25-26, 2001.
[96] B. Soltanian and Peter R. Kinget, “Tail current-shaping to improve phase noise in LC voltage-controlled oscillators,” IEEE J. Solid-State Circuits, vol. 41, pp. 1792-1802, 2006.
[97] J. W. M. Rogers, V. Levenets, C. A. Pawlowicz, N. Garry Tarr, T. J. Smy and C. Plett, “Post-process Cu inductors with application to a completely integrated 2-GHz VCO,” IEEE Trans. Electron Devices, vol. 48, pp. 1284-1287, 2001.
[98] E. K. Park, J. B. Yoon, S. Hong and E. Yoon, “A 2.6 GHz low phase-noise VCO monolithically integrated with high Q MEMS indcutors,” Proc. ESSCIRC Conf., pp. 143-146, 2002.